Refine Your Search

Topic

Search Results

Journal Article

Design and Experiment on Aircraft Electromechanical Actuator Fan at Different Altitudes and Rotational Speeds

2019-06-07
Abstract For electromechanical actuators (EMAs) and electronic devices cooling on aircraft, there is a need to study cooling fan performance at various altitudes from sea level to 12,000 m where the ambient pressure varies from 1 to 0.2 atm. As fan static pressure head is proportional to air density, the fan’s rotational speed has to be increased significantly to compensate for the low ambient pressure of 0.2 atm at the altitude of 12,000 m. To evaluate fan performance for EMA cooling, a high-rotational-speed, commercially available fan made by Ametek with a diameter of ~82 mm and ~3 m3/min zero-load open cooling flow rate when operating at 20,000 rpm was chosen as the baseline. According to fan scaling laws, this fan was expected to meet the cooling needs for an EMA when operating at 0.2 atm. Using a closed flow loop, the performance of the fan operating in the above ambient pressure range and at a rotational speed between 15,000 and 30,000 rpm was evaluated.
Journal Article

Process Regulations and Mechanism of WEDM of Combustor Material

2019-06-07
Abstract This study discusses the experimental investigation on WEDM of combustor material (i.e., nimonic 263). Experimentation has been executed by varying pulse-on time (Ton), pulse-off time (Toff), peak current (Ip), and spark gap voltage (Sv). Material removal rate (MRR), surface roughness (SR), and wire wear rate (WWR) are employed as process performance characteristics. Experiments are designed as per the box-Behnken design technique. Parametric optimization has also been performed using response surface methodology. Besides this, field-emission scanning electron microscope (FE-SEM) and an optical microscope are utilized to characterize WEDMed and worn-out wire surfaces. It is observed that both surfaces contain micro-cracks, craters, spherical droplets, and a lump of debris. Furthermore, the mechanism of recast layer formation has been critically evaluated to apprehend a better understanding of the technique. The key features of the experimental procedure are also highlighted.
Journal Article

High Power-Density, High Efficiency, Mechanically Assisted, Turbocharged Direct-Injection Jet-Ignition Engines for Unmanned Aerial Vehicles

2019-05-02
Abstract More than a decade ago, we proposed combined use of direct injection (DI) and jet ignition (JI) to produce high efficiency, high power-density, positive-ignition (PI), lean burn stratified, internal combustion engines (ICEs). Adopting this concept, the latest FIA F1 engines, which are electrically assisted, turbocharged, directly injected, jet ignited, gasoline engines and work lean stratified in a highly boosted environment, have delivered peak power fuel conversion efficiencies well above 46%, with specific power densities more than 340 kW/liter. The concept, further evolved, is here presented for unmanned aerial vehicle (UAV) applications. Results of simulations for a new DI JI ICE with rotary valve, being super-turbocharged and having gasoline or methanol as working fuel, show the opportunity to achieve even larger power densities, up to 430 kW/liter, while delivering a near-constant torque and, consequently, a nearly linear power curve over a wide range of speeds.
Journal Article

Role of Piston Bowl Shape to Enhance Late-Cycle Soot Oxidation in Low-Swirl Diesel Combustion

2019-04-25
Abstract Late-cycle soot oxidation in heavy-duty (HD) diesel engine low-swirl combustion was investigated using single-cylinder engine and spray chamber experiments together with engine combustion simulations. The in-cylinder flow during interactions between adjacent flames (flame-flame events) was shown to have a large impact on late-cycle combustion. To modify the flame-flame flow, a new piston bowl shape with a protrusion (wave) was designed to guide the near-wall flow. This design significantly reduced soot emissions and increased engine thermodynamic efficiency. The wave’s main effect was to enhance late-cycle mixing, as demonstrated by an increase in the apparent rate of heat release after the termination of fuel injection. Combustion simulations showed that the increased mixing is driven by enhanced flow re-circulation, which produces a radial mixing zone (RMZ).
Journal Article

Landing Response Analysis on High-Performance Aircraft* Using Estimated Touchdown States

2019-04-08
Abstract A novel use of state estimation methods as initial input for a landing response analysis is proposed in this work. Six degrees of freedom (DOF) non-linear landing response model is conceived by considering longitudinal dynamics of aircraft as a rigid body with heave-and-pitch motions coupled onto a bicycle landing gear † arrangement. The DOF for each landing gear consist of vertical and longitudinal motions of un-sprung mass, considering strut bending flexibility. The measurement data for state estimation is obtained for three landing cases using non-linear flight mechanics model interfaced with pilot-in-loop simulation. State estimation methods such as Upper Diagonal Adaptive Extended Kalman Filter (UD-AEKF) with fuzzy-based adaptive tuning and Un-scented Kalman Filter (UKF) were adapted for landing maneuver problem. On the basis of estimation error metrics, aircraft state from UKF is considered during onset of touchdown.
Journal Article

CAN-Bus Remote Monitoring: Standalone CAN Sensor Reading and Automotive Diagnostics

2019-02-08
Abstract A vehicle may be a font of data for some applications in safety, maintenance, and entertainment systems, once its electronic control units are connected to each other by a Controller Area Network (CAN) bus. By plugging a compatible device on the vehicle onboard diagnostics interface, reading raw data or conducting automotive diagnostics by International Standardization Organization 15765 and Society of Automotive Engineers J1979 is possible. The usual low-cost CAN data acquisition devices do not allow the connection to a cloud service for remote monitoring. Looking at this issue, this work proposes a low-cost NodeMCU CAN shield for data acquisition which is able to read the CAN frame of a Steering Angle Sensor, in Scenario 1, and standardized information from a vehicle such as its speed, identification number, and engine coolant temperature by automotive diagnostics, in Scenario 2.
Journal Article

Experimental Study of Ignition Delay, Combustion, and NO Emission Characteristics of Hydrogenated Vegetable Oil

2019-02-01
Abstract In this article, a comparative study of hydrogenated vegetable oil (HVO) and Diesel was performed in two constant volume combustion rigs and an optical accessible compression-ignited chamber (OACIC). Ignition, combustion, and nitric oxide (NO) emissions were studied under constant ambient gas density of 16.4 kg/m3, 21% vol oxygen concentration, and two different injection pressures of 800 and 1000 bar. Emission of NO was measured only in the OACIC, while a line-of-sight soot temperature distribution by applying two-color pyrometry was investigated in both setups. In general, the HVO as alternative fuel showed shorter ignition delay and less NO emission than Diesel for both injection pressures. Due to difference in the molecular structure, soot temperature of biofuel flames had narrower temperature spectrum than conventional fuel. Moreover, this study reveals the significance of wall-jet interaction for utilization of the biofuel.
Journal Article

Uncertainty Analysis of High-Frequency Noise in Battery Electric Vehicle Based on Interval Model

2019-02-01
Abstract The high-frequency noise issue is one of the most significant noise, vibration, and harshness problems, particularly in battery electric vehicles (BEVs). The sound package treatment is one of the most important approaches toward solving this problem. Owing to the limitations imposed by manufacturing error, assembly error, and the operating conditions, there is often a big difference between the actual values and the design values of the sound package components. Therefore, the sound package parameters include greater uncertainties. In this article, an uncertainty analysis method for BEV interior noise was developed based on an interval model to investigate the effect of sound package uncertainty on the interior noise of a BEV. An interval perturbation method was formulated to compute the uncertainty of the BEV’s interior noise.
Journal Article

Study of Temperature Distribution and Parametric Optimization during FSW of AA6082 Using Statistical Approaches

2019-02-01
Abstract In this article, Al-Mg-Si-Mn alloy (AA6082) is butt joined by employing friction stir welding (FSW). The mechanical and metallurgical properties of joints are analyzed by conducting tensile and microhardness testing, respectively. To measure the temperature at different locations, eight thermocouples (L-shaped k-type) are placed at equal distance from the centerline. Least square method attempts to calculate the temperature at the centerline of joints. The process parameters are also optimized using Taguchi’s five-level experimental design. The optimum process parameters are determined, employing ultimate tensile strength (UTS) as a response parameter. A statistical test “analysis of variance” is used to check the adequacy of the model. It has been observed that rotational speed and feed rate are the predominant factors for UTS and microhardness.
Journal Article

A Study of Low Temperature Plasma-Assisted Gasoline HCCI Combustion

2019-01-29
Abstract In this study low temperature plasma technology was applied to expand auto-ignition operation region and control auto-ignition phasing of the homogeneous charge compression ignition (HCCI) combustion. The low temperature plasma igniter of a barrier discharge model (barrier discharge igniter (BDI)) with high-frequency voltage (15 kHz) was provided at the top center of the combustion chamber, and the auto-ignition characteristics of the HCCI combustion by the low temperature plasma assistance was investigated by using a single-cylinder gasoline engine. HCCI combustion with compression ratio of 15:1 was achieved by increasing the intake air temperature. The lean air-fuel (A/F) ratio limit and visualized auto-ignition combustion process on baseline HCCI without discharge assistance, spark-assisted HCCI, and BDI-assisted HCCI were compared.
Journal Article

Hewing Out Evacuation Routes for Burning Buses by Linear-Shaped Charge Jet

2019-01-25
Abstract In recent years, several buses have ignited in some cities in China, causing numerous deaths and significant property damage. However, few research studies have been conducted to deal with such accidents. Therefore, in this work, a linear-shaped charge jet with rectangular cross sections was used to hew out evacuation routes for burning buses, and the parameter design for the shaped charge jet was improved according to asymmetry limitations and human tolerance. A numerical finite element simulation model of the behavior of a jet penetrating the jambs was established using ANSYS/LS-DYNA software. The asymmetrical characteristics of an arc segment in the structure of a rectangular-shaped charge were analyzed, in addition to the influence on the deviations of the jet penetration capacity and blast injuries to occupants caused by the side effects of detonation.
Journal Article

Separable and Standard Monte Carlo Simulation of Linear Dynamic Systems Using Combined Approximations

2019-01-25
Abstract Reliability analysis of a large-scale system under random dynamic loads can be a very time-consuming task since it requires repeated studies of the system. In many engineering problems, for example, wave loads on an offshore platform, the excitation loads are defined using a power spectral density (PSD) function. For a given PSD function, one needs to generate many time histories to make sure the excitation load is modeled accurately. Global and local approximation methods are available to predict the system response efficiently. Each way has their advantages and shortcomings. The combined approximations (CA) method is an efficient method, which combines the advantages of local and global approximations. This work demonstrates two methodologies that utilize CA to reduce the cost of crude or separable Monte Carlo simulation (MCS) of linear dynamic systems when the excitation loads are defined using PSD functions.
Journal Article

Electrifying Long-Haul Freight—Part II: Assessment of the Battery Capacity

2019-01-25
Abstract Recently, electric heavy-duty tractor-trailers (EHDTTs) have assumed significance as they present an immediate solution to decarbonize the transportation sector. Hence, to illustrate the economic viability of electrifying the freight industry, a detailed numerical model to estimate the battery capacity for an EHDTT is proposed for a route between Washington, DC, to Knoxville, TN. This model incorporates the effects of the terrain, climate, vehicular forces, auxiliary loads, and payload in order to select the appropriate motor and optimize the battery capacity. Additionally, current and near-future battery chemistries are simulated in the model. Along with equations describing vehicular forces based on Newton’s second law of motion, the model utilizes the Hausmann and Depcik correlation to estimate the losses caused by the capacity offset of the batteries. Here, a Newton-Raphson iterative scheme determines the minimum battery capacity for the required state of charge.
Journal Article

Development of a New Neutral Coasting Control Utilizing ADAS and GPS

2019-01-23
Abstract It has been discussed in numerous prior studies that in-neutral coasting, or sailing, can accomplish considerable amount of fuel saving when properly used. The driving maneuver basically makes the vehicle sail in neutral gear when propulsion is unnecessary. By disengaging a clutch or shifting the gear to neutral, the vehicle may better utilize its kinetic energy by avoiding dragging from the engine side. This strategy has been carried over to series production recently in some of the vehicles on the market and has become one of the eco-mode features available in current vehicles. However, the duration of coasting must be long enough to attain more fuel economy benefit than deceleration fuel cutoff (DFCO)-which exists in all current vehicle powertrain controllers-can bring. Also, the transients during shifting back to drive gear can result in a drivability concern.
Journal Article

Low Cycle Fatigue and Ratcheting Behavior of SA333 Gr-6 Steel at 300°C Temperature

2019-01-23
Abstract The objective of this investigation is to study the cyclic deformation behavior of SA333 Gr-6 C-Mn steel at 300°C. Low cycle fatigue tests were carried out at total strain amplitude between ±0.35 and ±1.25% at a constant strain rate of 1 × 10−3 s−1. Ratcheting tests were conducted at a various combination of mean stress and stress amplitude at a constant stress rate of 115 MPa s−1. The material SA333 Gr-6 steel exhibits cyclic hardening throughout its fatigue life. The material shows non-Masing behavior and deviation (δσo ) from Masing behavior increase with an increase of strain amplitude. Ratcheting strain accumulation increases, whereas ratcheting life decreases with an increase in mean stress or stress amplitude. With an increase in mean stress and stress amplitude, ratcheting rate also increases. The material shows hardening characteristic due to dynamic strain aging (DSA) phenomena.
Journal Article

Design and Development of a Semi-Autonomous Trailer Concept

2019-01-23
Abstract This work builds on previous efforts to develop a self-propelled, semi-autonomous trailer, for use with a standard passenger car. This trailer design involves a power source on the trailer itself, as well as the capacity to sense the load present in the trailer hitch that joins it to the towing vehicle. The load-sensing trailer hitch is used as the input to a control algorithm to determine how much power is required from the trailer’s power source. Two similar concepts were designed and constructed, using different approaches and different scales for testing. Preliminary testing was carried out, and while work remains to be done in order to produce a production-ready design, the progress made further demonstrates the feasibility and value of such a design. Future work will carry forward the research and development of this concept, with the goal of determining the best scheme for practical implementation.
Journal Article

Analysis of Temperature Swing Thermal Insulation for Performance Improvement of Diesel Engines

2019-01-23
Abstract Insulating combustion chamber surfaces with thermal barrier coatings (TBCs) provides thermal efficiency improvement when done appropriately. This article reports on insulation heat transfer, engine performance characteristics, and damage modelling of “temperature swing” TBCs. “Temperature swing” insulation refers to the insulation material applied on surfaces of combustion chamber walls that enables selective manipulation of its surface temperature profile over the four strokes of an engine cycle. A combined GT Suite-ANSYS Fluent simulation methodology is developed to investigate the impact of thermal properties and insulation thickness for a variety of TBC materials for its “temperature swing” characteristics. This one-dimensional transient heat conduction analyses and engine cycle simulations are performed using scaled-down thermal properties of yttria-stabilized zirconia.
Journal Article

The Key Role of Advanced, Flexible Fuel Injection Systems to Match the Future CO2 Targets in an Ultra-Light Mid-Size Diesel Engine

2019-01-23
Abstract The article describes the results achieved in developing a new diesel combustion system for passenger car application that, while capable of high power density, delivers excellent fuel economy through a combination of mechanical and thermodynamic efficiencies improvement. The project stemmed from the idea that, by leveraging the high fuel injection pressure of last generation common rail systems, it is possible to reduce the engine peak firing pressure (pfp) with great benefits on reciprocating and rotating components’ light-weighting and friction for high-speed light-duty engines, while keeping the power density at competitive levels. To this aim, an advanced injection system concept capable of injection pressure greater than 2500 bar was coupled to a prototype engine featuring newly developed combustion system. Then, the matching among these features has been thoroughly experimentally examined.
Journal Article

A Comprehensive Attack and Defense Model for the Automotive Domain

2019-01-17
Abstract In the automotive domain, the overall complexity of technical components has increased enormously. Formerly isolated, purely mechanical cars are now a multitude of cyber-physical systems that are continuously interacting with other IT systems, for example, with the smartphone of their driver or the backend servers of the car manufacturer. This has huge security implications as demonstrated by several recent research papers that document attacks endangering the safety of the car. However, there is, to the best of our knowledge, no holistic overview or structured description of the complex automotive domain. Without such a big picture, distinct security research remains isolated and is lacking interconnections between the different subsystems. Hence, it is difficult to draw conclusions about the overall security of a car or to identify aspects that have not been sufficiently covered by security analyses.
Journal Article

An Approach for Heavy-Duty Vehicle-Level Engine Brake Performance Evaluation

2019-01-08
Abstract An innovative analysis approach to evaluate heavy-duty vehicle downhill engine brake performance was developed. The vehicle model developed with GT-Drive simulates vehicle downhill control speeds with different engine brake retarding powers, transmission gears, and vehicle weights at sea level or high altitude. The outputs are then used to construct multi-factor parametric design charts. The charts can be used to analyze the vehicle-level engine brake capabilities or compare braking performance difference between different engine brake configurations to quantify the risk of engine retarding power deficiency at both sea level and high altitude downhill driving conditions.
X