Refine Your Search

Topic

Search Results

Journal Article

Economic Competitiveness of Battery Electric Vehicles vs Internal Combustion Engine Vehicles in India: A Case Study for Two- and Four-Wheelers

2024-04-04
The initial cost of battery electric vehicles (BEVs) is higher than internal combustion engine-powered vehicles (ICEVs) due to expensive batteries. Various factors affect the total cost of ownership of a vehicle. In India, consumers are concerned with a vehicle’s initial purchase cost and prefer owning an economical vehicle. The higher cost and shorter range of BEVs compared to ICEVs severely limit their penetration in the Indian market. However, government subsidies and incentives support BEVs. The total cost of ownership assessment is used to evaluate the entire cost of a vehicle to find the most economical option among different powertrains. This study compares 2W (two-wheeler) and 4W (four-wheeler) BEV’s cost vis-à-vis equivalent ICEVs in Delhi and Mumbai. The cost analysis assesses the current and future government policies to promote BEVs. Two assumed policies were applied to estimate future scenarios.
Journal Article

How Drivers Lose Control of the Car

2024-03-06
Abstract After a severe lane change, a wind gust, or another disturbance, the driver might be unable to recover the intended motion. Even though this fact is known by any driver, the scientific investigation and testing on this phenomenon is just at its very beginning, as a literature review, focusing on SAE Mobilus® database, reveals. We have used different mathematical models of car and driver for the basic description of car motion after a disturbance. Theoretical topics such as nonlinear dynamics, bifurcations, and global stability analysis had to be tackled. Since accurate mathematical models of drivers are still unavailable, a couple of driving simulators have been used to assess human driving action. Classic unstable motions such as Hopf bifurcations were found. Such bifurcations seem almost disregarded by automotive engineers, but they are very well-known by mathematicians. Other classic unstable motions that have been found are “unstable limit cycles.”
Journal Article

Longitudinal Air-Breathing Hypersonic Vehicle Nonlinear Dynamic Simulation with Different Control Inputs

2024-03-04
Abstract The air-breathing hypersonic vehicle (AHV) holds the potential to revolutionize global travel, enabling rapid transportation to low-Earth orbit and even space within the next few decades. This study focuses on investigating the nonlinear dynamic simulation, trim, and stability analysis of a three-degrees-of-freedom (3DOF) longitudinal model of a generic AHV for variable control surface deflection, δe and δr. A simulation is developed to analyze the burstiness of the AHV’s nonlinear longitudinal behavior, considering the complete flight envelope across a wide range of Mach numbers, from M = 0 to 24, for selected stable M. The presented simulation assesses trim analysis and explores the dynamic stability of the AHV through its flight envelope and bifurcation method analysis is carried out to gain insight and validate the dynamic stability using eigen value approach.
Journal Article

Influence of Exhaust Aftertreatment System on Powertrain Vibration Behavior

2024-03-01
Abstract NVH refinement of commercial vehicles is the key attribute for customer acceptance. Engine and road irregularities are the two major factors responsible for the same. During powertrain isolators’ design alone, the mass and inertia of the powertrain are usually considered, but in practical scenarios, a directly coupled subsystem also disturbs the boundary conditions for design. Due to the upgradation in emission norms, the exhaust aftertreatment system of modern automotive vehicles becomes heavier and more complex. This system is further coupled to the powertrain through a flexible joint or fixed joint, which results in the disturbance of the performance of the isolators. Therefore, to address this, the isolators design study is done by considering a multi-body dynamics model of vehicles with 16 DOF and 22 DOF problems, which is capable to simulate static and dynamic real-life events of vehicles.
Journal Article

Experimental Investigation of a Flexible Airframe Taxiing Over an Uneven Runway for Aircraft Vibration Testing

2024-03-01
Abstract The ground vibration test (GVT) is an important phase in a new aircraft development program, or the structural modification of a certified aircraft, to experimentally determine the structural vibrational modes of the aircraft and their modal parameters. These modal parameters are used to validate and correlate the dynamic finite element model of the aircraft to predict potential structural instabilities (such as flutter), assessing the significance of modifications to research vehicles by comparing the modal data before and after the modification and helping to resolve in-flight anomalies. Due to the high cost and the extensive preparations of such tests, a new method of vibration testing called the taxi vibration test (TVT) rooted in operational modal analysis (OMA) was recently proposed and investigated as an alternative method to conventional GVT.
Journal Article

Designing an Uncrewed Aircraft Systems Control Model for an Air-to-Ground Collaborative System

2024-02-19
Abstract In autonomous technology, uncrewed aircraft systems have already become the preferred platform for the research and development of flight control systems. Although they are subjected to following and satisfying complicated scenarios of control stations, this high dependency on a specific control framework limits them in their application process and reduces the flight self-organizing network. In this article, we present a developed multilayer control system protocol with the additional supportive manned aircraft layer (Tender). The novelty of the introduced model is that uncrewed aircraft systems are monitored and navigated by the tender, and then based on the suggested scheme, data flows are controlled and transferred across the network by the developed cloud–robotics approach in the ground station layer.
Journal Article

Research on Improving the Efficiency of Centrifugal Pump Using the Different Vane Surfaces of Bearings

2024-01-29
Abstract With the use of the stepped surface of the friction pairs of the stepped bearings (SB) in the high-speed centrifugal pumps, its liquid film thickness is suddenly changed and it was discontinuously distributed in the direction of motion of pump. To ensure the continuity of the liquid film thickness and enhance the lubrication efficiency of the pump, based on the lubrication model of the SB, two other structures of the inclined surfaces [inclined bearings (IB)] and curved surfaces [curved bearings (CB)] used to replace stepped surfaces of the SB are investigated, respectively. Under the same conditions of the minimum thickness of the liquid film and initial dimensions of the sliding friction pairs, the influence of both the thickness ratio (α) of the liquid film and dimension ratio (β) in the direction of motion of SB, IB, and CB on the bearing capacity and friction coefficient of the liquid film are simulated and analyzed, respectively.
Journal Article

Aircraft Cockpit Window Improvements Enabled by High-Strength Tempered Glass

2024-01-25
Abstract This research was initiated with the goal of developing a significantly stronger aircraft transparency design that would reduce transparency failures from bird strikes. The objective of this research is to demonstrate the fact that incorporating high-strength tempered glass into cockpit window constructions for commercial aircraft can produce enhanced safety protection from bird strikes and weight savings. Thermal glass tempering technology was developed that advances the state of the art for high-strength tempered glass, producing 28 to 36% higher tempered strength. As part of this research, glass probability of failure prediction methodology was introduced for determining the performance of transparencies from simulated bird impact loading. Data used in the failure calculation include the total performance strength of highly tempered glass derived from the basic strength of the glass, the temper level, the time duration of the load, and the area under load.
Journal Article

Modeling and Comparing the Total Cost of Ownership of Passenger Automobiles with Conventional, Electric, and Hybrid Powertrains

2024-01-25
Abstract The global automotive industry’s shift toward electrification hinges on battery electric vehicles (BEV) having a reduced total cost of ownership compared to traditional vehicles. Although BEVs exhibit lower operational costs than internal combustion engine (ICE) vehicles, their initial acquisition expense is higher due to expensive battery packs. This study evaluates total ownership costs for four vehicle types: traditional ICE-based car, BEV, split-power hybrid, and plug-in hybrid. Unlike previous analyses comparing production vehicles, this study employs a hypothetical sedan with different powertrains for a more equitable assessment. The study uses a drive-cycle model grounded in fundamental vehicle dynamics to determine the fuel and electricity consumption for each vehicle in highway and urban conditions. These figures serve a Monte Carlo simulation, projecting a vehicle’s operating cost over a decade based on average daily distance and highway driving percentage.
Journal Article

Optimizing Intralogistics in an Engineer-to-Order Enterprise with Job Shop Production: A Case Study of the Control Cabinet Manufacturing

2024-01-16
Abstract This study underscores the benefits of refining the intralogistics process for small- to medium-sized manufacturing businesses (SMEs) in the engineer-to-order (ETO) sector, which relies heavily on manual tasks. Based on industrial visits and primary data from six SMEs, a new intralogistics concept and process was formulated. This approach enhances the value-added time of manufacturing workers while also facilitating complete digital integration as well as improving transparency and traceability. A practical application of this method in a company lead to cutting its lead time by roughly 11.3%. Additionally, improved oversight pinpointed excess inventory, resulting in advantages such as reduced capital needs and storage requirements. Anticipated future enhancements include better efficiency from more experienced warehouse staff and streamlined picking methods. Further, digital advancements hold promise for cost reductions in administrative and supportive roles.
Journal Article

Designing Manual Workplace Systems in Engineer-to-Order Enterprises to Improve Productivity: A Kano Analysis

2024-01-16
Abstract Being an engineer-to-order (ETO) operating industry, the control cabinet industry faces difficulties in process and workplace optimizations due to changing requirements and lot size one combined with volatile orders. To optimize workplaces for employees, current literature is focusing on ergonomic designs, providing frameworks to analyze workplaces, leaving out the optimal design for productivity. This work thus utilizes a Kano analysis, collecting empirical data to identify essential design requirements for assembly workplaces, incorporating input from switchgear manufacturing employees. The results emphasize the need for a balance between ergonomics and efficiency in workplace design. Surprisingly, few participants agree on the correlation between improved processes and workspaces having a positive impact on their well-being and product quality.
Journal Article

Influence of Passive Pre-Chamber Nozzle Diameter on Jet Ignition in a Constant-Volume Optical Engine under Varying Load and Dilution Conditions

2023-12-20
Abstract Despite the growing prominence of electrified vehicles, internal combustion engines remain essential in future transportation. This study delves into passive pre-chamber jet ignition, a leading-edge combustion technology, offering a comprehensive visualization of its operation under varying load and dilution conditions in light-duty GDI engines. Our primary objectives are to gain fundamental insights into passive pre-chamber jet ignition and subsequent main combustion processes and evaluate their response to different load and dilution conditions. We conducted experimental investigations using a light-duty, optical, single-cylinder engine equipped with three passive pre-chamber designs featuring varying nozzle diameters. Optical diagnostic imaging and heat release analysis provided critical insights.
Journal Article

TOC

2023-12-18
Abstract TOC
Journal Article

Computational Investigation of a Flexible Airframe Taxiing Over an Uneven Runway for Aircraft Vibration Testing

2023-12-15
Abstract Ground vibration testing (GVT) is an important phase of the development, or the structural modification of an aircraft program. The modes of vibration and their associated parameters extracted from the GVT are used to modify the structural model of the aircraft to make more reliable dynamics predictions to satisfy certification authorities. Due to the high cost and the extensive preparations for such tests, a new method of vibration testing called taxi vibration testing (TVT) rooted in operational modal analysis (OMA) was recently proposed and investigated by the German Institute for Aerospace Research (DLR) as alternative to conventional GVT. In this investigation, a computational framework based on fully coupled flexible multibody dynamics for TVT is presented to further investigate the applicability of the TVT to flexible airframes. The time domain decomposition (TDD) method for OMA was used to postprocess the response of the airframe during a TVT.
Journal Article

A Review of Cavitation Phenomenon and Its Influence on the Spray Atomization in Diesel Injector Nozzles

2023-12-15
Abstract In view of the combustion efficiency and emission performance, various new clean combustion modes put forward higher requirements for the performance of the fuel injection system, and the cavitating two-phase flow characteristics in the injector nozzle have a significant impact on the spray atomization and combustion performance. This article comprehensively discusses and summarizes the factors that affect cavitation and the effectiveness of cavitation, and presents the research status and existent problems under each factor. Among them, viscosity factors are a hot research topic that researchers are passionate about, and physical properties factors still have the value of further in-depth research. However, the importance of material surface factors ranks last since the nozzle material was determined. Establishing a more comprehensive cavitation–atomization model considering various factors is the focus of research on cavitation phenomena.
Journal Article

Reviewers

2023-12-06
Abstract Reviewers
Journal Article

Reviewers

2023-11-30
Abstract Reviewers
Journal Article

Reviewers

2023-11-16
Abstract Reviewers
Journal Article

Research and Development on Noise, Vibration, and Harshness of Road Vehicles Using Driving Simulators—A Review

2023-11-15
Abstract Noise, vibration, and harshness (NVH) is a key aspect in the vehicle development. Reducing noise and vibration to create a comfortable environment is one of the main objectives in vehicle design. In the literature, many theoretical and experimental methods have been presented for improving the NVH performances of vehicles. However, in the great majority of situations, physical prototypes are still required as NVH is highly dependent on subjective human perception and a pure computational approach often does not suffice. In this article, driving simulators are discussed as a tool to reduce the need of physical prototypes allowing a reduction in development time while providing a deep understanding of vehicle NVH characteristics. The present article provides a review of the current development of driving simulator focused on problems, challenges, and solutions for NVH applications.
Journal Article

Reviewers

2023-11-13
Abstract Reviewers
X