Refine Your Search

Topic

Search Results

Journal Article

Weld Fatigue Damage Assessment of Rail Track Maintenance Equipment: Regulatory Compliance and Practical Insights

2024-03-04
Abstract The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs.
Journal Article

The Neutronic Engine: A Platform for Operando Neutron Diffraction in Internal Combustion Engines

2023-11-09
Abstract Neutron diffraction is a powerful tool for noninvasive and nondestructive characterization of materials and can be applied even in large devices such as internal combustion engines thanks to neutrons’ exceptional ability to penetrate many materials. While proof-of-concept experiments have shown the ability to measure spatially and temporally resolved lattice strains in a small aluminum engine on a timescale of minutes over a limited spatial region, extending this capability to timescales on the order of a crank angle degree over the full volume of the combustion chamber requires careful design and optimization of the engine structure to minimize attenuation of the incident and diffracted neutrons to maximize count rates.
Journal Article

Reliable Ship Emergency Power Source: A Monte Carlo Simulation Approach to Optimize Remaining Capacity Measurement Frequency for Lead-Acid Battery Maintenance

2023-07-14
Abstract The development of predictive maintenance has become one of the most important drivers of innovation, not only in the maritime industry. The proliferation of on-board and remote sensing and diagnostic systems is creating many new opportunities to reduce maintenance costs and increase operational stability. By predicting impending system faults and failures, proactive maintenance can be initiated to prevent loss of seaworthiness or operability. The motivation of this study is to optimize predictive maintenance in the maritime industry by determining the minimum useful remaining lead-acid battery capacity measurement frequency required to achieve cost-efficiency and desired prognostic performance in a remaining battery capacity indication system. The research seeks to balance operational stability and cost-effectiveness, providing valuable insight into the practical considerations and potential benefits of predictive maintenance.
Journal Article

Criticality of Prognostics in the Operations of Autonomous Aircraft

2023-06-28
Abstract This article addresses the design, testing, and evaluation of rigorous and verifiable prognostic and health management (PHM) functions applied to autonomous aircraft systems. These PHM functions—many deployed as algorithms—are integrated into a holistic framework for integrity management of aircraft components and systems that are subject to both operational degradation and incipient failure modes. The designer of a comprehensive and verifiable prognostics system is faced with significant challenges. Data (both baseline and faulted) that are correlated, time stamped, and appropriately sampled are not always readily available. Quantifying uncertainty, and its propagation and management, which are inherent in prognosis, can be difficult. High-fidelity modeling of critical components/systems can consume precious resources. Data mining tools for feature extraction and selection are not easy to develop and maintain.
Journal Article

Prediction of Surface Finish on Hardened Bearing Steel Machined by Ceramic Cutting Tool

2023-05-17
Abstract Prediction of the surface finish of hardened bearing steels was estimated in machining with ceramic uncoated cutting tools under various process parameters using two statistical approaches. A second-order (quadratic) regression model (MQR, multiple quantile regression) for the surface finish was developed and then compared with the artificial neural network (ANN) method based on the coefficient determination (R 2), root mean square error (RMSE), and percentage error (PE). The experimental results exhibited that cutting speed was the dominant parameter, but feed rate and depth of cut were insignificant in terms of the Pareto chart and analysis of variance (ANOVA). The optimum surface finish in machining bearing steel was achieved at 100 m/min speed, 0.1 mm/revolution (rev) feed rate, and 0.6 mm depth of cut.
Journal Article

Effect of Freeform Honing on the Geometrical Performance of the Cylinder Liner—Numerical Study

2022-09-01
Abstract Reducing the friction of the internal combustion engine (ICE) is of major interest to reduce fuel consumption and greenhouse gas (GHG) emissions. A huge potential for friction reduction is seen in the piston ring-cylinder liner (PRCL) coupling. Approaching the cylindrical liner shape in the hot operation state will enhance the PRCL conformation. Recently, newly developed freeform honing techniques can help to achieve this perfect cylinder shape. This article presents a numerical study of the effect of freeform honing on the geometrical performance of the liner in the hot operation state. The freeform honed liner (TR) concept is based on the approach of reversing the local deformation of a conventional circular liner. A validated computational model for a gasoline engine is used to compare the geometrical performance of those TR cases with circular, elliptical (EL), and conical elliptical liners (NEL) at different operational points.
Journal Article

A Reduced-Order Modeling Framework for Simulating Signatures of Faults in a Bladed Disk

2022-08-29
Abstract This article reports a reduced-order modeling framework of bladed disks on a rotating shaft to simulate the vibration signature of faults in different components, aiming toward simulated data-driven machine learning. We have employed lumped and one-dimensional analytical models of the subcomponents for better insight into the complex dynamic response. The framework addresses some of the challenges encountered in analyzing and optimizing fault detection and identification schemes for health monitoring of aeroengines and other rotating machinery. We model the bladed disks and shafts by combining lumped elements and one-dimensional finite elements, leading to a coupled system. The simulation results are in good agreement with previously published data. We model and analyze the cracks in a blade with their effective reduced stiffness approximation.
Journal Article

Prognostics and Machine Learning to Assess Embedded Delamination Tolerance in Composites

2022-08-26
Abstract Laminated composites are extensively used in the aerospace industry. However, structures made from laminated composites are highly susceptible to delamination failures. It is therefore imperative to consider a structure tolerance to delamination during design and operation. Hybrid composites with laminas containing different fibers were used earlier in laminates to achieve certain benefits in strength, stiffness, and buckling. However, the concept of mixing laminas with different fibers was not explored by researchers to enhance delamination tolerance levels. This article examines the above aspect of hybridization by employing machine learning algorithms and proposes a reliable method of analysis to study delamination, which is crucial to ensure the safety of airframe composite panels.
Journal Article

Supervised Learning Classification Applications in Fault Detection and Diagnosis: An Overview of Implementations in Unmanned Aerial Systems

2022-08-18
Abstract Statistical machine learning classification methods have been widely used in the fault detection analysis in several engineering domains. This motivates us to provide in this article an overview on the application of these methods in the fault diagnosis strategies and also their successful use in unmanned aerial vehicles (UAVs) systems. Different existing aspects including the implementation conditions, offline design, and online computation algorithms as well as computation complexity and detection time are discussed in detail. Evaluation and validation of these aspects have been ensured by a simple demonstration of the basic classification methods and neural network techniques in solving the fault detection and diagnosis problem of the propulsion system failure of a multirotor UAV. A testing platform of an Hexarotor UAV is completely realized.
Journal Article

Driving Behavior Modelling Framework for Intelligent Powertrain Health Management

2022-08-09
Abstract The implementation of an intelligent powertrain health management relies on robust prognostics modelling. However, prognostic capability is often limited due to unknown future operating conditions, which vary with duty cycles and individual driver behaviors. On the other hand, the growing availability of data pertaining to vehicle usage allows advanced modelling of usage patterns and driver behaviors, bringing optimization opportunities for powertrain operation and health management. This article introduces a methodology for driving behavior modelling, underpinned by Machine Learning (ML) classification algorithms, generating model-based predictive insight for intelligent powertrain health management strategies. Specifically, the aim is to learn the patterns of driving behavior and predict characteristics for the short-term future operating conditions as a basis for enhanced control strategies to optimize energy efficiency and system reliability.
Journal Article

Optimal Sizing and Profitability of Electrical Load Following Micro Combined Heat and Power Systems in the United States

2022-05-31
Abstract Every year the demands on the electric grid increase, but the ability to deliver power where needed remains problematic because of transmission and distribution losses, vulnerabilities to natural disasters, and struggles to meet peak load requirements in an increasing number of regions. To meet these increasing demands, especially with emerging electric vehicles, it becomes ever more important to develop integrated demand and response systems. One such promising technology is the use of a micro Combined Heat and Power (mCHP)-based distributed energy system that addresses both electricity and thermal demands (i.e., electricity, hot water, and space heating demands) by using a single unit. However, one major problem with this technology at the residential level is the optimal sizing and maximizing the operational time of mCHP systems in meeting electrical and thermal demands.
Journal Article

Fouling and Cleaning of Transparent, Functional Coatings for Autonomous Vehicle Sensors

2022-03-11
Abstract A reproducible analytical test method was developed to quantify the fouling resistance and cleanability of camera lens covers for autonomous vehicles (AVs). Reproducible fouling and cleaning cycles were achieved using a custom-built laboratory test stand. The impact of fouling/cleaning on image quality was quantified using digital image analysis. Three optically transparent, fluorine-containing functional coatings on lens covers were used to validate the test method. Accelerated weathering was employed to deliberately degrade the functional coatings. Coating degradation was characterized using water contact angle and X-ray photoelectron spectroscopy. The effect of coating degradation on cleaning performance was studied using this test method. This analysis method was able to characterize differences in coating performance and can be used as a tool to evaluate next-generation functional coatings for autonomous vehicles.
Journal Article

Study on Vibration Characteristics of the Towbarless Aircraft Taxiing System

2022-02-21
Abstract The civil aircraft nosewheel is clamped, lifted, and retained through the pick-up and holding system of the towbarless towing vehicle (TLTV), and the aircraft may be moved from the parking position to an adjacent one, the taxiway, a maintenance hangar, a location near the active runway, or conversely only with the power of the TLTV. The TLTV interfacing with the nose-landing gear of civil transport aircraft for the long-distance towing operations at a high speed could be defined as a towbarless aircraft taxiing system (TLATS). The dynamic loads induced by the system vibration may cause damage or reduce the certified safe-life limit of the nose-landing gear or the TLTV when the towing speed increases up to 40 km/h during the towing operations due to the maximum ramp weight of a heavy aircraft.
Journal Article

Protective Wall Settings for a Skid-Mounted Electrolytic Hydrogen Production System

2021-11-12
Abstract Electrolytic hydrogen production equipment has numerous hydrogen pipelines and high-pressure hydrogen storage tanks which may leak hydrogen which can lead to explosions causing damage to the nearby personnel and equipment. The present work modeled hydrogen explosions in a skid-mounted electrolytic hydrogen production unit. The model was first used to predict the area affected by an explosion without protective walls. The effects of protective walls on the flame and overpressure were then studied by modeling explosions with various protective walls at various distances from the opening on the side of the unit. The results show that the protective walls effectively reduced the damage behind the wall. However, the reflected shock waves may cause secondary damage in front of the wall if the protective wall is too close to the opening. Moreover, the protective wall blocks the hydrogen diffusion which increases the flammable gas mass.
Journal Article

Surveying Off-Board and Extravehicular Monitoring and Progress Towards Pervasive Diagnostics

2021-10-26
Abstract We survey the state of the art in off-board diagnostics for vehicles, their occupants, and environments, with particular focus on vibroacoustic (VA) approaches. We identify promising application areas including data-driven management for shared mobility and automated fleets, usage-based insurance, and vehicle, occupant, and environmental state and condition monitoring. We close by exploring the particular application of VA monitoring to vehicle diagnostics and prognostics and propose the introduction of automated vehicle- and context-specific model selection as a means of improving algorithm performance, e.g., to enable smartphone-resident diagnostics. Towards this vision, four strong-performing, interdependent classifiers are presented as a proof of concept for identifying vehicle configuration from acoustic signatures. The described approach may serve as the first step in developing “universal diagnostics,” with applicability extending beyond the automotive domain.
Journal Article

The Application of Flame Image Velocimetry to After-injection Effects on Flow Fields in a Small-Bore Diesel Engine

2021-09-14
Abstract This study implements Flame Image Velocimetry (FIV), a diagnostic technique based on post-processing of high-speed soot luminosity images, to show the in-flame flow field development impacted by after-injection in a single-cylinder, small-bore optical diesel engine. Two after-injection cases with different dwell times between the main injection and after-injection, namely, close-coupled and long-dwell, as well as a main-injection-only case are compared regarding flow fields, flow vector magnitude, and turbulence intensity distribution. For each case, high-speed soot luminosity movies from 100 individual combustion cycles are recorded at a high frame rate of 45 kHz for FIV processing. The Reynolds decomposition using a spatial filtering method is applied to the obtained flow vectors so that bulk flow structures and turbulence intensity distributions can be discussed.
Journal Article

Neural Partial Differentiation-Based Estimation of Terminal Airspace Sector Capacity

2021-07-14
Abstract The main focus of this article is the online estimation of the terminal airspace sector capacity from the Air Traffic Controller 0ATC) dynamical neural model using Neural Partial Differentiation (NPD) with permissible safe separation and affordable workload. For this purpose, a primarily neural model of a multi-input-single-output (MISO) ATC dynamical system is established, and the NPD method is used to estimate the model parameters from the experimental data. These estimated parameters have a less relative standard deviation, and hence the model validation results show that the predicted neural model response is well matched with the intervention of the ATC workload. Moreover, the proposed neural network-based approach works well with the experimental data online as it does not require the initial values of model parameters, which are unknown in practice.
Journal Article

Quantitative Assessment of Minor Incidents to Accident Transformation Probability and Its Impact on Aerodrome Operations

2021-06-10
Abstract Numerous operational procedures regulate aerodrome ground traffic. Detailed solutions in these procedures often come from preventive recommendations formulated as a result of accident cause analysis. With time, the conclusions drawn based on incidents, i.e., events that did not result in material damage or casualties, are becoming increasingly significant. In this article, we propose a new method for determining the probability of an incident turning into an air accident, based on the example of aerodrome traffic operations. Premises conducive to an accident in the considered class of events depend on both human and physical factors. Thus a hybrid approach was applied. We used a fuzzy inference system to analyze the premises dependent on vehicle operators, while the simulation method was selected to examine the premises dependent on physical factors. Both were integrated using the technique of event trees with fuzzy probabilities (ETFP).
Journal Article

Machine Learning Models for Predicting Grinding Wheel Conditions Using Acoustic Emission Features

2021-05-28
Abstract In an automated machining process, monitoring the conditions of the tool is essential for deciding to replace or repair the tool without any manual intervention. Intelligent models built with sensor information and machine learning techniques are predicting the condition of the tool with good accuracy. In this study, statistical models are developed to identify the conditions of the abrasive grinding wheel using the Acoustic Emission (AE) signature acquired during the surface grinding operation. Abrasive grinding wheel conditions are identified using the abrasive wheel wear plot established by conducting experiments. The piezoelectric sensor is used to capture the AE from the grinding process, and statistical features of the abrasive wheel conditions are extracted in time and wavelet domains of the signature. Machine learning algorithms, namely, Classification and Regression Trees (CART) and Support Vector Classifiers (SVC), are used to build statistical models.
X