Refine Your Search

Topic

Search Results

Journal Article

Optimization and Performance Evaluation of Additives-Enhanced Fluid in Machining Using Split-Plot Design

2024-04-15
Abstract In recent years, the use of cutting fluids has become crucial in hard metal machining. Traditional non-biodegradable cutting fluids have long dominated various industries for machining. This research presents an innovative approach by suggesting a sustainable alternative: a cutting fluid made from a blend of glycerol (GOL) and distilled water (DW). We conducted a thorough investigation, creating 11 different GOL and DW mixtures in 10% weight increments. These mixtures were rigorously tested through 176 experiments with varying loads and rotational speeds. Using Design-Expert software (DES), we identified the optimal composition to be 70% GOL and 30% DW, with the lowest coefficient of friction (CFN). Building on this promising fluid, we explored further improvements by adding three nanoscale additives: Nano-graphite (GHT), zinc oxide (ZnO), and reduced graphene oxide (RGRO) at different weight percentages (0.06%, 0.08%, 0.1%, and 0.3%).
Journal Article

Microstructural and Corrosion Behavior of Thin Sheet of Stainless Steel-Grade Super Duplex 2507 by Gas Tungsten Arc Welding

2024-03-21
Abstract Super duplex stainless steel (SDSS) is a type of stainless steel made of chromium (Cr), nickel (Ni), and iron (Fe). In the present work, a 1.6 mm wide thin sheet of SDSS is joined using gas tungsten arc welding (GTAW). The ideal parameter for a bead-on-plate trial is found, and 0.216 kJ/mm of heat input is used for welding. As an outcome of the welding heating cycle and subsequent cooling, a microstructural study revealed coarse microstructure in the heat-affected zone and weld zone. The corrosion rate for welded joints is 9.3% higher than the base metal rate. Following the corrosion test, scanning electron microscope (SEM) analysis revealed that the welded joint’s oxide development generated a larger corrosive attack on the weld surface than the base metal surface. The percentages of chromium (12.5%) and molybdenum (24%) in the welded joints are less than those in the base metal of SDSS, as per energy dispersive X-ray (EDX) analysis.
Journal Article

Investigation on the Surface Structure and Tribological Characterization of 10 wt.% ZrO2-Reinforced Alumina Prepared by Flame Spray Coating

2024-02-20
Abstract In this study, we have investigated the microstructural characteristics, the mechanical properties, and the dry sliding wear behavior of a ceramic coating consisting of zirconia (ZrO2) and alumina (Al2O3) deposited by flame spraying. A series of wear tests were carried out under a variety of loads and at two different sliding speeds. The evaluation included an examination of the coating microstructure, microhardness, coefficient of friction (COF), and wear resistance of the flame-sprayed coating. The results showed that the coatings had a perfectly structured micro-architecture and were metallurgically bonded to the substrate. The Al2O3 coating exhibited a fine granular structure with pores and oxides. The microstructure of Al2O3-10 wt.% ZrO2, on the other hand, showed a blocky structure with a uniform distribution of ZrO2 inclusions in the composite coating.
Journal Article

TOC

2024-02-12
Abstract TOC
Journal Article

TOC

2023-12-18
Abstract TOC
Journal Article

Influence of High-Strength, Low-Alloy Steel on Fatigue Life at a Non-Load-Bearing Transverse Welded Attachment

2023-11-17
Abstract This study investigated the influence of high-strength low-alloy steel on the fatigue life of a load-bearing member with a non-load-bearing transverse welded attachment (T-joint). It compared high cycle fatigue data to two fatigue design codes, namely BS 7608 and Eurocode EN 1993-1-9. Different base and filler material combinations of varying material strengths were investigated, resulting in a total of three different specimen configurations. Two material combinations had a high-strength steel (Strenx® 700 MC D) for the base material, with one combination having a matched filler material and the other having an undermatched filler material. The third material combination had a lower-strength steel (S 355 JR AR) for the base material, with a matched filler material. Tensile tests were performed to confirm the base material mechanical properties and weld quality of the manufactured specimens.
Journal Article

Grasshopper Optimization Algorithm for Multi-objective Optimization of Multi-pass Face Milling of Polyamide (PA6)

2023-10-30
Abstract Milling is a prevalent machining technique employed in various industries for the production of metallic and non-metallic components. This article focuses on the optimization of cutting parameters for polyamide (PA6) using carbide tools, utilizing a recently developed multi-objective, nature-inspired metaheuristic algorithm known as the Multi-Objective Grasshopper Optimization Algorithm (MOGOA). This optimization process’s primary objectives are minimizing surface roughness and maximizing the material removal rate. By employing the MOGOA algorithm, the study demonstrates its efficacy in successfully optimizing the cutting parameters. This research’s findings highlight the MOGOA algorithm’s capability to effectively fine-tune cutting parameters during PA6 machining, leading to improved outcomes in terms of surface roughness reduction and enhanced material removal rate.
Journal Article

Effect of Heat Treatment on Microstructure and Mechanical Properties of Medium-Carbon Steel Drawn Wire

2023-09-29
Abstract In this article, the effect of heat treatment on the microstructure and mechanical behavior of medium-carbon steel wire intended for the spring mattress is investigated using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction, Vickers hardness (Hv), and tensile strength. The results indicate that the microstructure elongation along the wire axis is observed with the bending and kinking lamellae at the deformation level of 57.81%, this change appears as a fracture in the microstructure and leads to an increase in hardness, tensile strength, and intensities of diffraction patterns. After heat treatment, we observed a redistribution in the grain, which is almost the same in the wire rod and drawn wires; indeed, this led to a decrease in hardness, tensile strength, and augmentation in intensities of peaks. The EBSD pole figures reveal the development of texture in the cementite slip plane (001).
Journal Article

Research on the Tribological Properties of Layered Kaolin Lubricant Additives

2023-06-12
Abstract Lubricant additives are the main means to improve the performance of lubricants. In this article, green and inexpensive layered kaolin were selected as lubricant additives, and the effects of the type of modifier, concentration, particle size of kaolin additives, and working temperatures on the tribological performance of lubricants were investigated. The results showed that the Span80 modifier can effectively improve the dispersibility and friction reduction effects of kaolin oil samples. Compared with kaolin oil samples without the modifier, the modified kaolin oil can reduce the friction coefficient by 40.9% and the wear spot diameter of the steel balls by 43.8%. The layered kaolin additive can significantly reduce the friction coefficient and wear of steel balls in lubrication, and the friction coefficient showed a trend of decreasing and then increasing with increasing kaolin additive concentration and particle size.
Journal Article

Prediction of Surface Finish on Hardened Bearing Steel Machined by Ceramic Cutting Tool

2023-05-17
Abstract Prediction of the surface finish of hardened bearing steels was estimated in machining with ceramic uncoated cutting tools under various process parameters using two statistical approaches. A second-order (quadratic) regression model (MQR, multiple quantile regression) for the surface finish was developed and then compared with the artificial neural network (ANN) method based on the coefficient determination (R 2), root mean square error (RMSE), and percentage error (PE). The experimental results exhibited that cutting speed was the dominant parameter, but feed rate and depth of cut were insignificant in terms of the Pareto chart and analysis of variance (ANOVA). The optimum surface finish in machining bearing steel was achieved at 100 m/min speed, 0.1 mm/revolution (rev) feed rate, and 0.6 mm depth of cut.
Journal Article

Effect of NiAl Bond Layer on the Wear Resistance of an Austenitic Stainless Steel Coating Obtained by Arc Spray Process

2023-05-11
Abstract The present investigation has been conducted to study the tribological and adhesion properties of X10CrNi18-8 austenitic stainless steel (ASTM 301) coatings deposited on aluminum alloys such as AU4G by using the arc-spraying process. These coatings were made with and without a bond-coat layer, which is constituted by NiAl. The structure of the phases that are present in coatings was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The measurements of microhardness and tribological behavior at different loads were also performed on the surface of the coatings. Adherence test was also carried out using four-point bending tests. The SEM showed that the dense microstructures of coatings have a homogeneous lamellar morphology with the presence of porosities and unmelted particles. The main phase of coating corresponds to a solid solution as a face-centered cubic (fcc).
Journal Article

A Method for Measuring In-Plane Forming Limit Curves Using 2D Digital Image Correlation

2023-04-10
Abstract With the introduction of advanced lightweight materials with complex microstructures and behaviors, more focus is put on the accurate determination of their forming limits, and that can only be possible through experiments as the conventional theoretical models for the forming limit curve (FLC) prediction fail to perform. Despite that, CAE engineers, designers, and toolmakers still rely heavily on theoretical models due to the steep costs associated with formability testing, including mechanical setup, a large number of tests, and the cost of a stereo digital image correlation (DIC) system. The international standard ISO 12004-2:2021 recommends using a stereo DIC system for formability testing since two-dimensional (2D) DIC systems are considered incapable of producing reliable strains due to errors associated with out-of-plane motion and deformation.
Journal Article

Sub-zero Quasi-static and Fatigue Behavior of SAE 1040 Automotive Anti-roll Bars in Flexure

2023-01-05
Abstract The objective of the study was to evaluate the quasi-static and fatigue performance of automotive anti-roll bars (ARBs) under extreme environmental conditions. Flexural quasi-static and fatigue tests of SAE 1040 steel were conducted above and below the ductile-to-brittle transition temperature (DBTT) in flexure and compared with their room temperature performance. The flexural strength increased by decreasing the temperature to −40°C. The fatigue lives are determined for stress levels of 87%, 60%, and 30% of their flexural strength under displacement mode in constant amplitude loading. Experimental stress versus the number of cycles (S-N) curves of SAE 1040 steel state that all tube specimens have fatigue limits that were more than 100,000 cycles at −40°C. The fatigue life of the SAE 1040 tube exhibited infinite life below the ductile-to-brittle transition (DBT).
Journal Article

Predicting Mechanical Properties of Friction Welded AISI 1020/AISI 1018 Steel and AISI 431/AISI 1018 Steel Joints

2023-01-05
Abstract The joining of dissimilar AISI 1020/AISI 1018 steel and AISI 431/AISI 1018 steel carries significant importance in automotive applications to lower the cost of manufacturing and obtain the mechanical properties of different materials. However, the joining of these materials by fusion welding is difficult particularly for a rod-to-plate joint configuration such as solidification cracking, wider heat affected zone (HAZ), HAZ softening, high residual stresses, and distortion of joint configuration. So, to overcome the issues in fusion welding of AISI 1020/AISI 1018 steel and AISI 431/AISI 1018 steel, rotary friction welding (RFW) was employed to develop the rod-to-plate joints. The parametric empirical relationships (PERs) were developed using regression equations incorporating RFW parameters to predict tensile strength (TS) and weld interface hardness (WIH) of rod-to-plate joints.
Journal Article

Effectiveness of 2D Digital Image Correlation in Capturing the Fracture Behavior of Sheet Metal Alloys

2022-12-14
Abstract It is a consensus in academia and the industry that 2D digital image correlation (2D-DIC) is inferior to a stereo DIC for high-accuracy material testing applications. It has been theoretically established by previous researchers that the 2D-DIC measurements are prone to errors due to the inability of the technique to capture the out-of-plane motion/rotation and the calibration errors due to lens distortion. Despite these flaws, 2D-DIC is still widely used in several applications involving high accuracy and precision, for example studying the fracture behavior of sheet metal alloys. It is, therefore, necessary to understand and quantify the measurement errors induced in the 2D-DIC measurements. In this light, the presented work attempts to evaluate the effectiveness of 2D-DIC in mechanical testing required for the generation of fracture strain vs. triaxiality curve for sheet metal.
Journal Article

Machining Performance Analysis in Electrical Discharge Machining of Alloy Tool Steel

2022-11-30
Abstract This article primarily focuses on studying and analyzing the effect of machining parameters, viz., pulse on time (TON), pulse off time (TOFF), and pulse current (Ip) on machining performance in terms of surface roughness (Ra) and material removal rate (MRR) during electrical discharge machining (EDM) of alloy tool steel (SKD11 steel). The traditional trial-and-error methods used to derive empirical relationship and optimize the process is time consuming and results in reduced productivity, high rejection, and cost. The response surface methodology (RSM) approach of design of experiment technique was applied for designing the experiments. The influences of EDM parameters on Ra and MRR were investigated using different graphs. The mathematical model equations for Ra and MRR were generated. The optimum parametric combinations for smaller Ra (highest surface finish) and highest MRR were found, and the optimized values of Ra and MRR were obtained.
Journal Article

TOC

2022-09-07
Abstract TOC
Journal Article

Study of the Grain Growth Kinetics and Its Influence on Mechanical Behavior of Plain Carbon Steel

2022-08-18
Abstract In the present study, the mechanical performances of plain carbon steel were explored based on the grain growth behavior. In the first step, the samples were normalized at different temperatures ranging from 900°C to 1100°C for 30, 60, 100, 150, and 200 min, respectively. In order to measure the grain size, the planimetric technique of Jeffries was used based on the optical micrographs taken for each sample. The mechanical properties of each grain such as hardness, elongation, yield, and tensile strength were studied, depending on the conventional methods. Experimental results showed that the increase in both heating temperature and holding time enhances grain growth, while the growth rate decreases with increasing time. The initial grain size and proportionality constant were calculated at 950°C, where K = 2.26 μm2/min and D 0 = 25.09 μm. Moreover, a significant increase in strength and hardness was observed with a decrease in grain size.
Journal Article

Experimental Research on the Dynamic Characteristics of Wire Rope Transverse Shock Wave

2022-08-09
Abstract Due to their high strength and good flexibility, wire ropes are widely used in various intense applications. A wire rope will present complex wave mechanics, especially under impact conditions. In this article, wire ropes (steel core rope and hemp core rope alternately twisted) were used to study the wave dynamic response of steel wire ropes with preload shock. The transmission law of wire rope shock waves was obtained through actual measurements. The results showed that the compression wave and shear wave were generated and propagated along the rope after impact. The conduction of shear waves had significant reflection characteristics, and the reflected waves overlapped with each other. The conduction velocity of the impact shear wave of the steel core wire rope increased with increasing pretension. The peak tension caused by impact decayed exponentially.
Journal Article

Review and Assessment of Stress-Based Multiaxial Fatigue Models for High Cycle Fatigue Life Predictions

2022-04-04
Abstract In a previous study [1], several multiaxial fatigue models were investigated and compared based on their ability to predict the fatigue limit under multiaxial loading conditions. The widely used historical models such as Findley [2] and Dang Van [3] were compared to several recently developed models. The methods were investigated for the purpose of assessing their potential use automotive design. In the current study, the same multiaxial fatigue models were assessed based on their ability to perform life prediction under high cycle multiaxial loading. The experimental data used for the assessment of the seven different multiaxial models was taken from literature. Five of the models, Findley, McDiarmid, Susmel-Lazzarin, MZSL, and scaled normal stress were critical plane approaches. The other two models were the LTJ approach and the prismatic hull method, both of which are based on the von Mises criteria.
X