Refine Your Search

Topic

Search Results

Journal Article

How Drivers Lose Control of the Car

2024-03-06
Abstract After a severe lane change, a wind gust, or another disturbance, the driver might be unable to recover the intended motion. Even though this fact is known by any driver, the scientific investigation and testing on this phenomenon is just at its very beginning, as a literature review, focusing on SAE Mobilus® database, reveals. We have used different mathematical models of car and driver for the basic description of car motion after a disturbance. Theoretical topics such as nonlinear dynamics, bifurcations, and global stability analysis had to be tackled. Since accurate mathematical models of drivers are still unavailable, a couple of driving simulators have been used to assess human driving action. Classic unstable motions such as Hopf bifurcations were found. Such bifurcations seem almost disregarded by automotive engineers, but they are very well-known by mathematicians. Other classic unstable motions that have been found are “unstable limit cycles.”
Journal Article

Effect of Turbine Speed Parameter on Exhaust Pulse Energy Matching of an Asymmetric Twin-Scroll Turbocharged Heavy-Duty Engine

2024-03-04
Abstract The two-branch exhaust of an asymmetric twin-scroll turbocharged engine are asymmetrically and periodically complicated, which has great impact on turbine matching. In this article, a matching effect of turbine speed parameter on asymmetric twin-scroll turbines based on the exhaust pulse energy weight distribution of a heavy-duty diesel engine was introduced. First, it was built as an asymmetric twin-scroll turbine matching based on exhaust pulse energy distribution. Then, by comparing the average matching point and energy matching points on the corresponding turbine performance map, it is revealed that the turbine speed parameter of energy matching points was a significant deviation from the turbine speed parameter under peak efficiency, which leads to the actual turbine operating efficiency lower than the optimal state.
Journal Article

Design, Analysis, and Optimization of Off-Highway Rear Dump Truck Chassis Frame Rail Profile Using Design Exploration and Finite Element Analysis Technique

2024-01-31
Abstract During mining material hauling, the chassis frame structure of rear dump trucks is subjected to fatigue loading due to uneven road conditions. This loading often leads to crack propagation in the frame rails, necessitating the determination of stresses in the critical zone during the design stage to ensure structural integrity. In this study, a computer-aided engineering (CAE) methodology is employed to size and select the rectangular profile cross section of the chassis frame rail. A detailed design investigation of the chassis frame is conducted to assess its load resistance, structural flexibility, and weld joint fatigue life under critical stresses arising from combined bending and torsion loads. The optimization process aims to determine the optimal rail size and material thickness, striking a balance between minimizing mass and maximizing structural reliability.
Journal Article

Multi-objective Optimization of Injection Molding Process Based on One-Dimensional Convolutional Neural Network and the Non-dominated Sorting Genetic Algorithm II

2024-01-29
Abstract In the process of injection molding, the vacuum pump rear housing is prone to warping deformation and volume shrinkage, which affects its sealing performance. The main reason is the improper control of the injection process and the large flat structure of the vacuum pump rear housing, which does not meet its production and assembly requirements (the warpage deformation should be controlled within 1.1 mm and the volume shrinkage within 10%). To address this issue, this study initially utilized orthogonal experiments to obtain training samples and conducted a preliminary analysis using gray relational analysis. Subsequently, a predictive model was established based on a one-dimensional convolutional neural network (1D CNN).
Journal Article

Optimizing Intralogistics in an Engineer-to-Order Enterprise with Job Shop Production: A Case Study of the Control Cabinet Manufacturing

2024-01-16
Abstract This study underscores the benefits of refining the intralogistics process for small- to medium-sized manufacturing businesses (SMEs) in the engineer-to-order (ETO) sector, which relies heavily on manual tasks. Based on industrial visits and primary data from six SMEs, a new intralogistics concept and process was formulated. This approach enhances the value-added time of manufacturing workers while also facilitating complete digital integration as well as improving transparency and traceability. A practical application of this method in a company lead to cutting its lead time by roughly 11.3%. Additionally, improved oversight pinpointed excess inventory, resulting in advantages such as reduced capital needs and storage requirements. Anticipated future enhancements include better efficiency from more experienced warehouse staff and streamlined picking methods. Further, digital advancements hold promise for cost reductions in administrative and supportive roles.
Journal Article

Designing Manual Workplace Systems in Engineer-to-Order Enterprises to Improve Productivity: A Kano Analysis

2024-01-16
Abstract Being an engineer-to-order (ETO) operating industry, the control cabinet industry faces difficulties in process and workplace optimizations due to changing requirements and lot size one combined with volatile orders. To optimize workplaces for employees, current literature is focusing on ergonomic designs, providing frameworks to analyze workplaces, leaving out the optimal design for productivity. This work thus utilizes a Kano analysis, collecting empirical data to identify essential design requirements for assembly workplaces, incorporating input from switchgear manufacturing employees. The results emphasize the need for a balance between ergonomics and efficiency in workplace design. Surprisingly, few participants agree on the correlation between improved processes and workspaces having a positive impact on their well-being and product quality.
Journal Article

Energy-Efficient Dispatching of Battery Electric Truck Fleets with Backhauls and Time Windows

2023-12-22
Abstract The adoption of battery electric trucks (BETs) as a replacement for diesel trucks has potential to significantly reduce greenhouse gas emissions from the freight transportation sector. However, BETs have shorter driving range and lower payload capacity, which need to be taken into account when dispatching them. This article addresses the energy-efficient dispatching of BET fleets, considering backhauls and time windows. To optimize vehicle utilization, customers are categorized into two groups: linehaul customers requiring deliveries, where the deliveries need to be made following the last-in-first-out principle, and backhaul customers requiring pickups. The objective is to determine a set of energy-efficient routes that integrate both linehaul and backhaul customers while considering factors such as limited driving range, payload capacity of BETs, and the possibility of en route recharging.
Journal Article

Assessing the Characterization for Multiple Cones and Cone Portions Utilizing X-Ray Diffraction in Single Point Incremental Forming

2023-12-06
Abstract Single point incremental forming (SPIF) is a robust and new technique. In the recent research scenario, materials properties such as microstructure, micro-texture analysis, and crystal structure can be accessed through characterization non-destructive techniques, e.g., scanning electron microscope (SEM), electron backscattered diffraction (EBSD), and X-ray diffraction (XRD). XRD is a non-destructive method for analyzing the fine structure of materials. This study explores how process variables such as wall angle, step size, feed rate, and forming speed affect the parts of large-, medium-, and small-sized truncated cones of aluminum alloy AA3003-O sheet. Several cone parts of truncated cones are used in this investigation to implement Scherrer’s method. The two primary determining factors peak height and crystallite size are assessed for additional analysis in the present research.
Journal Article

Design and Failure Analysis of Motorbike Sub-frame Using Finite Element Analysis

2023-12-05
Abstract All two-wheeler industries validate their product’s fatigue life on proving track before heading for mass production. Proving test tracks are made to simulate the end-user environment in order to find out the possible fatigue failures during each development stage of vehicle design, which in turn helps the CAE analysts to verify the design before it goes to the end-user hands. In this article we present the design and failure analysis of sub-frame assembly of motorbike observed during the accelerated fatigue test on proving track. Sub-frame main rod was found broken exactly between two weld endings during fatigue test before reaching 6% of the target fatigue life. Possible causes of sub-frame failures have been identified/analyzed in detail using fish bone diagram. A finite element analysis (FEA) model of sub-frame assembly was developed and a random response analysis was carried out on initial design.
Journal Article

Lithium-Ion Battery Thermal Event and Protection: A Review

2023-12-01
Abstract The exponentially growing electrification market is driving demand for lithium-ion batteries (LIBs) with high performance. However, LIB thermal runaway events are one of the unresolved safety concerns. Thermal runaway of an individual LIB can cause a chain reaction of runaway events in nearby cells, or thermal propagation, potentially causing significant battery fires and explosions. Such a safety issue of LIBs raises a huge concern for a variety of applications including electric vehicles (EVs). With increasingly higher energy-density battery technologies being implemented in EVs to enable a longer driving mileage per charge, LIB safety enhancement is becoming critical for customers. This comprehensive review offers an encompassing overview of prevalent abuse conditions, the thermal event processes and mechanisms associated with LIBs, and various strategies for suppression, prevention, and mitigation.
Journal Article

Performance Analysis of Cooperative Truck Platooning under Commercial Operation during Canadian Winter Season

2023-11-14
Abstract The cooperative platoon of multiple trucks with definite proximity has the potential to enhance traffic safety, improve roadway capacity, and reduce fuel consumption of the platoon. To investigate the truck platooning performance in a real-world environment, two Peterbilt class-8 trucks equipped with cooperative truck platooning systems (CTPS) were deployed to conduct the first-of-its-kind on-road commercial trial in Canada. A total of 41 CTPS trips were carried out on Alberta Highway 2 between Calgary and Edmonton during the winter season in 2022, 25 of which were platooning trips with 3 to 5 sec time gaps. The platooning trips were performed at ambient temperatures from −24 to 8°C, and the total truck weights ranged from 16 to 39 tons. The experimental results show that the average time gap error was 0.8 sec for all the platooning trips, and the trips with the commanded time gap of 5 sec generally had the highest variations.
Journal Article

Optimization of Takeaway Delivery Based on Large Neighborhood Search Algorithm

2023-11-09
Abstract The drone logistics distribution method, with its small size, quick delivery, and zero-touch, has progressively entered the mainstream of development due to the global epidemic and the rapidly developing global emerging logistics business. In our investigation, a drone and a delivery man worked together to complete the delivery order to a customer’s home as quickly as possible. We realize the combined delivery network between drones and delivery men and focus on the connection and scheduling between drones and delivery men using existing facilities such as ground airports, unmanned stations, delivery men, and drones. Based on the dynamic-vehicle routing problem model, the establishment of a delivery man and drone with a hybrid model, in order to solve the tarmac unmanned aerial vehicle for take-out delivery scheduling difficulties, linking to the delivery man and an adaptive large neighborhood search algorithm solves the model.
Journal Article

Reducing Greenhouse Emissions from Light-Duty Vehicles: Supply-Chain and Cost-Effectiveness Analyses Suggest a Near-Term Role for Hybrids

2023-10-30
Abstract Policy makers generally favor all-electric vehicles over hybrid-electric vehicles because of greater unit effectiveness in reducing carbon emissions. Since both systems use lithium-ion batteries, global demand for batteries is projected to grow 10-fold by 2030. If any step in the global battery supply-chain experiences bottlenecks, shortages can occur. We use a novel cost-effectiveness metric, carbon reduction per unit of battery capacity consumed, to rank emissions reductions accomplished by, alternatively, eight plug-in hybrid-electric vehicles, 75 hybrid-electric vehicles, and 230 mild hybrid-electric vehicles, which have the same total battery capacity as one all-electric vehicle. Our main finding, although counterintuitive, is that, with limited battery supplies, larger reductions in carbon emissions can be accomplished by hybrids than by all-electric vehicles.
Journal Article

Contribution to the Objective Evaluation of Combined Longitudinal and Lateral Vehicle Dynamics in Nonlinear Driving Range

2023-10-19
Abstract Since the complexity of modern vehicles is increasing continuously, car manufacturers are forced to improve the efficiency of their development process to remain profitable. A frequently mentioned measure is the consequent integration of virtual methods. In this regard, objective evaluation criteria are essential for the virtual design of driving dynamics. Therefore, this article aims to identify robust objective evaluation criteria for the nonlinear combined longitudinal and lateral dynamics of a vehicle. The article focuses on the acceleration in a turn maneuver since available objective criteria do not consider all relevant characteristics of vehicle dynamics. For the identification of the objective criteria, a generic method is developed and applied. First, an open-loop test procedure and a set of potential robust objective criteria are defined.
Journal Article

Conceptualizing an Urban Operations Vehicle within a Comprehensive Research and Development Program

2023-09-07
Abstract In the last decades we have witnessed an increasing number of military operations in urban environments. Complex urban operations require high standards of training, equipment, and personnel. Emergency forces on the ground will need specialized vehicles to support them in all parts and levels of this extremely demanding environment including the subterranean and interior of infrastructure. The development of vehicles for this environment has lagged but offers a high payoff. This article describes the method for developing a concept for an urban operations vehicle by characterization of the urban environment, deduction of key issues, evaluation of related prototyping, science fiction story-typing of the requirements for such a vehicle, and comparison with field-proven and scalable solutions. Embedding these thoughts into a comprehensive research and development program provides lines of development, setting the stage for further research.
Journal Article

Electrically Interconnected Suspension and Related Technologies: A Comprehensive Review

2023-08-10
Abstract The electrically interconnected suspension (EIS) is a novel suspension system that has gained attention due to its potential to improve vehicle vibration control. This article provides a comprehensive review of EIS and related technologies. It starts with an overview of the research on hydraulic interconnected suspension (HIS) and its limitations. Then, it discusses the development of the electromagnetic suspension (EMS) and its advantages in adjusting mechanical characteristics. The article focuses on the electrical network and decoupling control characteristics of EIS, demonstrating the principle of synchronous decoupling control of multiple vibration modes. A comparison of the structure and control characteristics of EIS and HIS highlights the advantages of EIS in vehicle vibration control.
Journal Article

A Review of Intelligence-Based Vehicles Path Planning

2023-07-28
Abstract Numerous researchers are committed to finding solutions to the path planning problem of intelligence-based vehicles. How to select the appropriate algorithm for path planning has always been the topic of scholars. To analyze the advantages of existing path planning algorithms, the intelligence-based vehicle path planning algorithms are classified into conventional path planning methods, intelligent path planning methods, and reinforcement learning (RL) path planning methods. The currently popular RL path planning techniques are classified into two categories: model based and model free, which are more suitable for complex unknown environments. Model-based learning contains a policy iterative method and value iterative method. Model-free learning contains a time-difference algorithm, Q-learning algorithm, state-action-reward-state-action (SARSA) algorithm, and Monte Carlo (MC) algorithm.
Journal Article

A Literature Review of Simulation Fidelity for Autonomous-Vehicle Research and Development

2023-05-25
Abstract This article explores the value of simulation for autonomous-vehicle research and development. There is ample research that details the effectiveness of simulation for training humans to fly and drive. Unfortunately, the same is not true for simulations used to train and test artificial intelligence (AI) that enables autonomous vehicles to fly and drive without humans. Research has shown that simulation “fidelity” is the most influential factor affecting training yield, but psychological fidelity is a widely accepted definition that does not apply to AI because it describes how well simulations engage various cognitive functions of human operators. Therefore, this investigation reviewed the literature that was published between January 2010 and May 2022 on the topic of simulation fidelity to understand how researchers are defining and measuring simulation fidelity as applied to training AI.
Journal Article

Predicting and Controlling the Quality of Injection Molding Properties for Fiber-Reinforced Composites

2023-04-29
Abstract Fiber-reinforced composites are widely used in injection molding processes because of their high strength and high elastic modulus. However, the addition of reinforcing agents such as glass fibers has a significant impact on their injection molding quality. The difference in shrinkage and hardness between the plastic and the reinforcement will bring about warpage and deformation in the injection molding of the product. At the same time, the glass fibers will be oriented in the flow direction during the injection molding process. This will enhance the mechanical properties in the flow direction and increase the shrinkage in the vertical direction, reducing the molding quality of the product. In this study, a test program was developed based on the Box-Behnken test design in the Design-Expert software, using a plastic part as an example.
X