Refine Your Search

Topic

Search Results

Journal Article

TOC

2024-04-15
Abstract TOC
Journal Article

Spectroscopy-Based Machine Learning Approach to Predict Engine Fuel Properties of Biodiesel

2024-04-11
Abstract Various feedstocks can be employed for biodiesel production, leading to considerable variation in composition and engine fuel characteristics. Using biodiesels originating from diverse feedstocks introduces notable variations in engine characteristics. Therefore, it is imperative to scrutinize the composition and properties of biodiesel before deployment in engines, a task facilitated by predictive models. Additionally, the international commercialization of biodiesel fuel is contingent upon stringent regulations. The traditional experimental measurement of biodiesel properties is laborious and expensive, necessitating skilled personnel. Predictive models offer an alternative approach by estimating biodiesel properties without depending on experimental measurements. This research is centered on building models that correlate mid-infrared spectra of biodiesel and critical fuel properties, encompassing kinematic viscosity, cetane number, and calorific value.
Journal Article

Suitability Study of Biofuel Blend for Light Commercial Vehicle Application under Real-World Transient Operating Conditions

2024-04-10
Abstract Driving schedule of every vehicle involves transient operation in the form of changing engine speed and load conditions, which are relatively unchanged during steady-state conditions. As well, the results from transient conditions are more likely to reflect the reality. So, the current research article is focused on analyzing the biofuel-like lemon peel oil (LPO) behavior under real-world transient conditions with fuel injection parameter MAP developed from steady-state experiments. At first, engine parameters and response MAPs are developed by using a response surface methodology (RSM)-based multi-objective optimization technique. Then, the vehicle model has been developed by incorporating real-world transient operating conditions. Finally, the developed injection parameters and response MAPs are embedded in the vehicle model to analyze the biofuel behavior under transient operating conditions.
Journal Article

Modeling Approach for Hybrid Integration of Renewable Energy Sources with Vehicle-to-Grid Technology

2024-03-29
Abstract This article presents a technical study on the integration of hybrid renewable energy sources (RES) with vehicle-to-grid (V2G) technology, aiming to enhance energy efficiency, grid stability, and mitigating power imbalances. The growing adoption of RES and electric vehicles (EV) necessitates innovative solutions to mitigate intermittency and optimize resource utilization. The study’s primary objective is to design and analyze a hybrid distribution generation system encompassing solar photovoltaic (PV) and wind power stations, along with a conventional diesel generator, connected to the utility grid. A V2G system is strategically embedded within the microgrid to facilitate bidirectional power exchange between EV and the grid. Methodologically, MATLAB/Simulink® 2021a is employed to simulate the system’s performance over one day.
Journal Article

Effect of Turbine Speed Parameter on Exhaust Pulse Energy Matching of an Asymmetric Twin-Scroll Turbocharged Heavy-Duty Engine

2024-03-04
Abstract The two-branch exhaust of an asymmetric twin-scroll turbocharged engine are asymmetrically and periodically complicated, which has great impact on turbine matching. In this article, a matching effect of turbine speed parameter on asymmetric twin-scroll turbines based on the exhaust pulse energy weight distribution of a heavy-duty diesel engine was introduced. First, it was built as an asymmetric twin-scroll turbine matching based on exhaust pulse energy distribution. Then, by comparing the average matching point and energy matching points on the corresponding turbine performance map, it is revealed that the turbine speed parameter of energy matching points was a significant deviation from the turbine speed parameter under peak efficiency, which leads to the actual turbine operating efficiency lower than the optimal state.
Journal Article

Review of Research on Asymmetric Twin-Scroll Turbocharging for Heavy-Duty Diesel Engines

2024-02-21
Abstract Asymmetric twin-scroll turbocharging technology, as one of the effective technologies for balancing fuel economy and nitrogen oxide emissions, has been widely studied in the past decade. In response to the ever-increasing demands for improved fuel efficiency and reduced exhaust emissions, extensive research efforts have been dedicated to investigating various aspects of this technology. Researchers have conducted both experimental and simulation studies to delve into the intricate flow mechanism of asymmetric twin-scroll turbines. Furthermore, considerable attention has been given to exploring the optimal matching between asymmetric twin-scroll turbines and engines, as well as devising innovative flow control methods for these turbines. Additionally, researchers have sought to comprehend the impact of exhaust pulse flow on the performance of asymmetric twin-scroll turbines.
Journal Article

Demonstration of 2027 Emissions Standards Compliance Using Heavy-Duty Gasoline Compression Ignition with P1 Hybridization

2024-02-19
Abstract Heavy-duty on-road engines are expected to conform to an ultralow NOx (ULNOx) standard of 0.027 g/kWh over the composite US heavy-duty transient federal test procedure (HD-FTP) cycle by 2031, a 90% reduction compared to 2010 emissions standards. Additionally, these engines are expected to conform to Phase 2 greenhouse gas regulations, which require tailpipe CO2 emissions under 579 g/kWh. This study experimentally demonstrates the ability of high fuel stratification gasoline compression ignition (HFS-GCI) to satisfy these emissions standards. Steady-state and transient tests are conducted on a prototype multi-cylinder heavy-duty GCI engine based on a 2010-compliant Cummins ISX15 diesel engine with a urea-SCR aftertreatment system (ATS). Steady-state calibration exercises are undertaken to develop highly fuel-efficient GCI calibration maps at both cold-start and warmed up conditions.
Journal Article

Use of Artificial Neural Network to Develop Surrogates for Hydrotreated Vegetable Oil with Experimental Validation in Ignition Quality Tester

2024-02-01
Abstract This article presents surrogate mixtures that simulate the physical and chemical properties in the auto-ignition of hydrotreated vegetable oil (HVO). Experimental investigation was conducted in the Ignition Quality Tester (IQT) to validate the auto-ignition properties with respect to those of the target fuel. The surrogate development approach is assisted by artificial neural network (ANN) embedded in MATLAB optimization function. Aspen HYSYS is used to calculate the key physical and chemical properties of hundreds of mixtures of representative components, mainly alkanes—the dominant components of HVO, to train the learning algorithm. Binary and ternary mixtures are developed and validated in the IQT. The target properties include the derived cetane number (DCN), density, viscosity, surface tension, molecular weight, and volatility represented by the distillation curve. The developed surrogates match the target fuel in terms of ignition delay and DCN within 6% error range.
Journal Article

Machine Learning-Based Modeling and Predictive Control of Combustion Phasing and Load in a Dual-Fuel Low-Temperature Combustion Engine

2024-01-18
Abstract Reactivity-controlled compression ignition (RCCI) engine is an innovative dual-fuel strategy, which uses two fuels with different reactivity and physical properties to achieve low-temperature combustion, resulting in reduced emissions of oxides of nitrogen (NOx), particulate matter, and improved fuel efficiency at part-load engine operating conditions compared to conventional diesel engines. However, RCCI operation at high loads poses challenges due to the premixed nature of RCCI combustion. Furthermore, precise controls of indicated mean effective pressure (IMEP) and CA50 combustion phasing (crank angle corresponding to 50% of cumulative heat release) are crucial for drivability, fuel conversion efficiency, and combustion stability of an RCCI engine.
Journal Article

Artificial Intelligence-Based Field-Programmable Gate Array Accelerator for Electric Vehicles Battery Management System

2024-01-04
Abstract The swift progress of electric vehicles (EVs) and hybrid electric vehicles (HEVs) has driven advancements in battery management systems (BMS). However, optimizing the algorithms that drive these systems remains a challenge. Recent breakthroughs in data science, particularly in deep learning networks, have introduced the long–short-term memory (LSTM) network as a solution for sequence problems. While graphics processing units (GPUs) and application-specific integrated circuits (ASICs) have been used to improve performance in AI-based applications, field-programmable gate arrays (FPGAs) have gained popularity due to their low power consumption and high-speed acceleration, making them ideal for artificial intelligence (AI) implementation. One of the critical components of EVs and HEVs is the BMS, which performs operations to optimize the use of energy stored in lithium-ion batteries (LiBs).
Journal Article

An Energy-Efficient Merge-Aware Cruise Control Method for Connected Electric Vehicles

2023-12-28
Abstract This article presents a merge-aware cruise control method that incorporates vehicle-to-vehicle (V2V) information and aims at improving the energy efficiency of vehicles and reducing speed disruptions of merging traffic during highway merges. During the events of highway merges, the gap between the ego and the preceding vehicle reduces drastically, which can result in sudden braking of the ego vehicle and thus reduction of its energy efficiency. We propose a rather simple cruise control algorithm to eliminate such sudden variations in the gap and velocity with respect to the preceding vehicle during highway merges, thus reducing the large accelerations and braking during such events and thereby improving energy efficiency. The proposed algorithm incorporates future traffic information and has computational requirements similar to adaptive cruise control methods, hence it is real-time applicable.
Journal Article

Energy-Efficient Dispatching of Battery Electric Truck Fleets with Backhauls and Time Windows

2023-12-22
Abstract The adoption of battery electric trucks (BETs) as a replacement for diesel trucks has potential to significantly reduce greenhouse gas emissions from the freight transportation sector. However, BETs have shorter driving range and lower payload capacity, which need to be taken into account when dispatching them. This article addresses the energy-efficient dispatching of BET fleets, considering backhauls and time windows. To optimize vehicle utilization, customers are categorized into two groups: linehaul customers requiring deliveries, where the deliveries need to be made following the last-in-first-out principle, and backhaul customers requiring pickups. The objective is to determine a set of energy-efficient routes that integrate both linehaul and backhaul customers while considering factors such as limited driving range, payload capacity of BETs, and the possibility of en route recharging.
Journal Article

Speedy Hierarchical Eco-Planning for Connected Multi-Stack Fuel Cell Vehicles via Health-Conscious Decentralized Convex Optimization

2023-12-04
Abstract Connected fuel cell vehicles (C-FCVs) have gained increasing attention for solving traffic congestion and environmental pollution issues. To reduce operational costs, increase driving range, and improve driver comfort, simultaneously optimizing C-FCV speed trajectories and powertrain operation is a promising approach. Nevertheless, this remains difficult due to heavy computational demands and the complexity of real-time traffic scenarios. To resolve these issues, this article proposes a two-level eco-driving strategy consisting of speed planning and energy management layers. In the top layer, the speed planning predictor first predicts dynamic traffic constraints using the long short-term memory (LSTM) model. Second, a model predictive control (MPC) framework optimizes speed trajectories under dynamic traffic constraints, considering hydrogen consumption, ride comfort, and traffic flow efficiency.
Journal Article

Combustion Optimization of a Premixed Ultra-Lean Blend of Natural Gas and Hydrogen in a Dual Fuel Engine Running at Low Load

2023-12-01
Abstract The numerical study presented in this article is based on an automotive diesel engine (2.8 L, 4-cylinder, turbocharged), considering a NG–H2 blend with 30 vol% of H2, ignited by multiple diesel fuel injections. The 3D-CFD investigation aims at improving BTE, CO, and UHC emissions at low load, by means of an optimization of the diesel fuel injection strategy and of the in-cylinder turbulence (swirl ratio, SR). The operating condition is 3000 rpm – BMEP = 2 bar, corresponding to about 25% of the maximum load of a gen-set engine, able to deliver up to 83 kW at 3000 rpm (rated speed). The reference diesel fuel injection strategy, adopted in all the previous numerical and experimental studies, is a three-shot mode. The numerical optimization carried out in this study consisted in finding the optimal number of injections per cycle, as well as the best timing of each injection and the fuel mass split among the injections.
Journal Article

Performance Analysis of Cooperative Truck Platooning under Commercial Operation during Canadian Winter Season

2023-11-14
Abstract The cooperative platoon of multiple trucks with definite proximity has the potential to enhance traffic safety, improve roadway capacity, and reduce fuel consumption of the platoon. To investigate the truck platooning performance in a real-world environment, two Peterbilt class-8 trucks equipped with cooperative truck platooning systems (CTPS) were deployed to conduct the first-of-its-kind on-road commercial trial in Canada. A total of 41 CTPS trips were carried out on Alberta Highway 2 between Calgary and Edmonton during the winter season in 2022, 25 of which were platooning trips with 3 to 5 sec time gaps. The platooning trips were performed at ambient temperatures from −24 to 8°C, and the total truck weights ranged from 16 to 39 tons. The experimental results show that the average time gap error was 0.8 sec for all the platooning trips, and the trips with the commanded time gap of 5 sec generally had the highest variations.
Journal Article

Methanol (M85) Port Fuel-Injected Spark Ignition Motorcycle Engine Development—Part 1: Combustion Optimization for Efficiency Improvement and Emission Reduction

2023-10-27
Abstract Limited fossil fuel resources and carbonaceous greenhouse gas emissions are two major problems the world faces today. Alternative fuels can effectively power internal combustion engines to address these issues. Methanol can be an alternative to conventional fuels, particularly to displace gasoline in spark ignition engines. The physicochemical properties of methanol are significantly different than baseline gasoline and fuel mixture-aim lambda; hence methanol-fueled engines require modifications in the fuel injection parameters. This study optimized the fuel injection quantity, spark timing, and air–fuel ratio for M85 (85% v/v methanol + 15% v/v gasoline) fueling of a port fuel-injected single-cylinder 500 cc motorcycle test engine. Comparative engine performance, combustion, and emissions analyses were performed for M85 and baseline gasoline.
Journal Article

Blending Carbon Intensity for Ethanol in Gasoline

2023-10-27
Abstract Greenhouse gas emissions reduction from the light-duty transportation fleet is urgent and should address both electric and conventional powertrain technologies. Internal combustion engines will continue to be employed for vehicle propulsion and fleet turnover is slow, encouraging reduction of carbon content in gasoline. Currently ethanol, a renewable fuel, is blended at the 10% level into petroleum to produce finished market gasoline. Ethanol enables a less carbon-intensive petroleum blendstock composition, providing for additional reduction, but this is often overlooked in studies. Carbon intensity, as a ratio of CO2 mass to heat released upon combustion, is a measure of well-to-wheels greenhouse gas production. The well-to-wheels carbon intensity of ethanol does not include its chemical carbon content because it arises from a renewable source, but does consider all upstream farming, production, and transportation carbon impacts.
Journal Article

Methanol (M85) Port-Fuel-Injected Spark Ignition Motorcycle Engine Development—Part 2: Dynamic Performance, Transient Emissions, and Catalytic Converter Effectiveness

2023-10-27
Abstract Methanol is emerging as an alternate internal combustion engine fuel. It is getting attention in countries such as China and India as an emerging transport fuel. Using methanol in spark ignition engines is easier and more economical than in compression ignition engines via the blending approach. M85 (85% v/v methanol and 15% v/v gasoline) is one of the preferred blends with the highest methanol concentration. However, its physicochemical properties significantly differ from gasoline, leading to challenges in operating existing vehicles. This experimental study addresses the challenges such as cold-start operation and poor throttle response of M85-fueled motorcycle using a port fuel injection engine. In this study, M85-fueled motorcycle prototype is developed with superior performance, similar/better drivability, and lower emissions than a gasoline-fueled port-fuel-injected motorcycle.
Journal Article

Divided Exhaust Period Assessment for Fuel-Enrichment Reduction in Turbocharged Spark-Ignition Engines

2023-10-26
Abstract Turbocharged spark-ignition (SI) engines, owing to frequent engine knocking events, utilize retarded spark timing that causes combustion inefficiency, and high turbine inlet temperature (Trb-In T) levels. Fuel enrichment is implemented at high power levels to prevent excessive Trb-In T levels, resulting in an additional fueling penalty and higher CO emissions. In current times, fuel-enrichment reductions are of high strategic importance for engine manufacturers to meet the imminent emissions regulations. To that end, the authors investigated the divided exhaust period (DEP) concept in a 2.2 L turbocharged SI engine with a geometric compression ratio of 14 by decoupling blowdown (BD) and scavenge (SC) events during the exhaust process. Using a validated 1D engine model, the authors first analyzed the DEP concept in terms of pumping mean effective pressure (PMEP) and engine knocking (KI) reduction.
Journal Article

Reduced Carbon Intensity of Ethanol Blend Gasoline

2023-10-26
Abstract Tank-to-wheels (TTW) CO2 reduction for ethanol blends is determined from either gasoline composition or vehicle exhaust measurements. Fuels are characterized using a carbon intensity (CI), which is the ratio of carbon (as CO2 mass) in the fuel to the net heating value. Our objective is to assess changes in CI of market gasoline with varying ethanol content that can be used to appreciate change in vehicle tailpipe greenhouse gases (GHG) in response to policy controlling the ethanol level in market fuels. Ethanol has both a reduced carbon content and a reduced net (lower) heating value relative to petroleum species, with a CI slightly lower than that of typical petroleum gasoline. However, ethanol blending offers additional CI reduction because it enables a reduction of aromatics in the petroleum blendstock for oxygenate blending (BOB) while maintaining octane rating of the blend. Aromatics have a CI about 20% higher than paraffins.
X