Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Potential Analysis and Virtual Development of SI Engines Operated with Synthetic Fuel DMC+

2020-04-14
2020-01-0342
On the way to emission-free mobility, future fuels must be CO2 neutral. To achieve this, synthetic fuels are being developed. In order to better assess the effects of the new fuels on the engine process, simulation models are being developed that reproduce the chemical and physical properties of these fuels. In this paper, the fuel DMC+ is examined. DMC+ (a mixture of dimethyl carbonate (DMC) and methyl formate (MeFo) mainly, characterized by the lack of C-C Bonds and high oxygen content) offers advantages with regard to evaporation heat, demand of oxygen and knock resistance. Furthermore, its combustion is almost particle free. With the aid of modern 0D/1D simulation methods, an assessment of the potential of DMC+ can be made. It is shown that the simulative conversion of a state-of-the-art gasoline engine to DMC+ fuel offers advantages in terms of efficiency in many operating points even if the engine design is not altered.
Technical Paper

Towards an Integral Combustion Model for Model-Based Control of PCCI Engines

2019-09-09
2019-24-0001
Physics-based models in a closed-loop feedback control of a premixed charge compression ignition (PCCI) engine can improve the combustion efficiency and potentially reduce harmful NOx and soot emissions. A stand-alone multi-zone combustion model has been proposed in the literature using a physics-based mixing approach. The scalar dissipation rate emerged as the determining parameter in the model for mixing among different zones in the mixture fraction space. However, the calculation of the scalar dissipation rate depends on three approaches: three-dimensional computational fluid dynamics (3-D CFD) combustion simulations based on representative interactive flamelet (RIF) model, tabulation, or an empirical algebraic model of the scalar dissipation rate fitted for the given operating conditions of the engine. While the 3-D CFD approach provides accurate results, it is computationally too expensive to use the multi-zone model in closed-loop control.
Technical Paper

Reduced Chemical Mechanism for the Calculation of Ethanol / Air Flame Speeds

2015-09-06
2015-24-2492
Ethanol currently remains the leading biofuel in the transportation sector, with special focus on spark ignition engines, as a pure as well as a blend component. In order to provide reliable numerical simulations of gasoline combustion processes under the influence of ethanol for modern engine research, it is mandatory to develop well validated detailed kinetic combustion models. One key parameter for the numerical simulation is the laminar burning velocity. Under the aspect of minimizing the general simulation effort for burning velocities, well-validated models have to be reduced. As a base kinetic mechanism for the reduction and optimisation process with respect to burning velocity calculations, a detailed model presented by Zhao et al. (Int. J. Chem. Kin. 40 (1) (2007) 1-18) is chosen. The model has been extensively validated against shock tube, rapid compression machine and burning velocity data. The detailed model consists of 55 species and 290 reactions.
X