Refine Your Search

Topic

Author

Affiliation

Search Results

Research Report

Unsettled Technology Domains in Aerospace Additive Manufacturing Concerning Safety, Airworthiness, and Certification

2019-12-20
EPR2019008
Additive manufacturing (AM) is currently being used to produce many certified aerospace components. However, significant advantages of AM are not exploited due to unresolved issues associated with process control, feedstock materials, surface finish, inspection, and cost. Components subject to fatigue must undergo surface finish improvements to enable inspection. This adds cost and limits the use of topology optimization. Continued development of process models is also required to enable optimization and understand the potential for defects in thin walled and slender sections. Costs are high for powder-fed processes due to material costs, machine costs, and low deposition rates. Cost for wire-fed processes are high due to the extensive post-process machining required. In addition, these processes are limited to low-complexity features.
Technical Paper

Effect of Eccentric Imbalance of Various Crank Train Components on Vibrations in Single Cylinder Diesel Engines

2019-11-21
2019-28-2417
Diesel engine is the main source of power for many agricultural applications such as water pump sets, compressors and tractors. At the same time it is also the main source of vibrations. Mechanical vibrations have instantaneous and long term effects on human body. Kinds of effects depend upon duration of exposure and frequency of vibrations. The increasing demands of improved comfort levels of operators are putting pressures on tractor manufacturers on reducing the vibration levels which thereby resulting in improving diesel engine vibrations. Vibration is the movement or mechanical oscillations about an equilibrium position of a machine or component. A Vibration analysis is about the art of looking for changes in the vibration pattern and then relating those changes. Vibration always occurs when there is unbalanced body in reciprocating or rotary motion.
Technical Paper

Neural Network Based Hybridized Dynamic Models for Connected Vehicles - A Case Study on Turbocharger Position Prediction

2019-11-21
2019-28-2443
Combustion engine driven vehicles operating in a connected and autonomous vehicle (CAVs) environment, the engine drive cycles are run in a regulated manner. This is due to synchronized movement of vehicles operating in connected environment. Hence, developing intelligent and faster control of airpath variable with smooth transient tracking, helps to achieve a synchronized drive cycle. With regards to this author discuss modeling of turbocharger. This is critical for airpath system variable calculation. Due to the hybridized nature of turbocharger models, predicting accurately the position of VTG without introduction of any sensing devices is key, as sensing device induces delay in action. Authors propose a model which improve the performance and capability of VTG position prediction. A neural network based supervised learning model is developed. This model is coupled with engine models which are in series application for performance evaluation.
Technical Paper

Usage of Telematics Data in Advance Powertrain Development

2019-11-21
2019-28-2438
To achieve accuracy in model development with large-scale actual customer data in low cost and limited time usage of telematics system was adopted. Honda’s OBD II diagnostic connecting device Honda Connect was used as transceiver for this telematics system, which was used as an accessory in Honda vehicles. Data collected with this device with large sample size and regional diversity across India was used in product development for Honda System. Control system development for BSVI vehicles, Idle start stop hardware specification selection and Battery electric vehicle target range study was done with Honda Connect Data.
Technical Paper

Optimization of Compression Ratio for DI Diesel Engines for Better Fuel Economy

2019-11-21
2019-28-2431
Fuel economy is becoming one of the key parameter as it does not only account for the profitability of commercial vehicle owner but also has impact on environment. Fuel economy gets affected from several parameters of engine such as Peak firing pressure, reduction in parasitic losses, volumetric efficiency and thermal efficiency. Compression ratio is one of key design criteria which affects most of the above mentioned parameters, which not only improve fuel efficiency but also results in improvement of emission levels. This paper evaluates the optimization of Compression ratio and study its effect on Engine performance. The parameters investigated in this paper include combustion bowl volume in Piston and Cylinder head gasket thickness as these are major contributing factors affecting clearance volume and in turn the compression ratio of engine. Based on the calculation results, an optimum Compression Ratio for the engine is selected.
Technical Paper

Numerical Simulation of Battery Thermal Management Systems in Electric Vehicles

2019-11-21
2019-28-2481
Electric vehicle works on stored energy inside the batteries or cells. These units needs to be regulated by cool down or heat up to perform utmost. This temperature regulation also ensure individual battery or cell life. BCS are installed on vehicles to regulate the temperature around battery packs. To ensure maximum performance of these units, numerical simulation is performed and detailed optimization of flow rate as well as flow path into BCS is carried out. All the parts are assembled inside the unit as per defined packaging area or size. Numerical modelling (CFD) is performed to examine the flow path. Flow path is very important to examine, as BCS units consists of condenser. It is very important for condensers to perform efficiently, which means air flow should happen across it appropriately. If sufficient flow is not happening across the condenser, then performance of condensers comes down and optimum temperature around battery packs cannot be maintained.
Technical Paper

Testing Electric Vehicle Sub-Systems Using Low Cost Programmable Electronic Load

2019-11-21
2019-28-2492
The advancements in Electric Vehicles have introduced many complex sub-systems with demanding and sporadic power needs. For example, the current consumed by electric motor or bank of super-capacitors involve transients making them non-linear loads. Conventional test systems for load analysis mainly involved resistive loads where the rate of rise or fall of current was linear, falling short to accommodate the dynamic behavior of the Electric Vehicle loads. In this paper, we have proposed a low cost; yet effective electronic load that is independent of the battery voltage and can sink the current in any prescribed pattern with respect to time. The simulation results have shown the effectiveness of the hardware with respect to changes in temperature, aging and sudden input fluctuations. The implemented electronic load is interfaced to a desktop application to program the dynamic load behavior and the test duration.
Technical Paper

Design and Development of Automotive Battery Management System

2019-11-21
2019-28-2498
Battery operated vehicle needs accurate management system because of its quick changes in State of Charge (SoC) due to aggressive acceleration profiles and regenerative braking. Li-ion battery needs control over its operating area for the safe working. The main objective of the proposed system is to develop a BMS having algorithms to estimate accurate SoC, balance individual cells, thermal management, and provide safe area of operation defined by voltage and temperature. Proposed methodology uses Coulomb Counting as well as Model-based Design approach wherein nonlinear behavior of battery is modeled as Equivalent Circuit Model to compute the SoC and degradation effect on battery to decide the end of life of battery. Also performing Inductive Active Balancing on cells to equalize the charge.
Technical Paper

Engine Fuel Economy Optimization for Different Hybrid Architectures Using 1-D Simulation Technique

2019-11-21
2019-28-2496
Hybridization of off road vehicles is in its early phase but it is likely to increase in coming years. In order to improve fuel economy and overall emission of the 3.3 litre tractor model, various kinds of engine hybridization is studied. This paper presents a methodology to predict vehicle fuel consumption and emission using 1-D software by coupling Ricardo Wave and Ricardo Ignite. Initially, An acceptable agreement within 5% deviation between simulation and experimental is established for engine steady state points, both for engine performance and NOx emission parameters. Engine fuel consumption and emission maps are predicted using Ricardo WAVE model. These maps are used as an input to IGNITE model for predicting cumulative fuel consumption. Same calibrated model is used further for studying idle start stop and fully hybrid P0 type hybrid architecture. The hybrid P0 type involves idle start stop, e-boost and regeneration.
Technical Paper

Estimating Drive Cycle for E-Rickshaws Using Real World Operating Scenarios for Overall Powertrain Improvements

2019-11-21
2019-28-2497
E-Rickshaws are popular and convenient mode of transportation for last mile connectivity and are typically used for short distance (<10 Km) commute. As per recent reports there are more than 1.5 million e-rickshaws plying on Indian roads and approx. 10,000 vehicles are adding every month. Owners of these vehicles are inclined towards the overall range these vehicles can give on a single charge. Range can be improved by using efficient powertrain. Range can also be improved by optimized Battery Management systems and Controllers. Though there are certain evaluation criteria (such as curtailed Indian Drive Cycles) which can be used for efficiency estimations, manufacturers are more interested in extending the range in real world scenarios. Hence, the availability of real-world drive cycle is imperative. Through this paper, we have attempted to derive a typical drive cycle by collecting road data of various types of e-Rickshaws under different environment conditions.
Technical Paper

Performance & Efficiency Improvement of Electric Vehicle Power Train

2019-11-21
2019-28-2483
Introduction: The advent of electric mobility is changing the conventional mobility techniques and their application in automobiles across all segments. This development comes with challenges ranging across varied sub -systems in a vehicle including Power Train, HVAC, Accessories, etc. Objective: This paper would concentrate on the Power train related sub systems & improvement of the same both in terms of Efficiency & Performance. Methodology: The electric power train consists of three major sub parts: 1. Motor Unit 2. Controller with Power electronics 3. Battery Pack with BMS We would concentrate on improving the overall efficiency and performance of all these subsystems while they perform in vehicle environment and work in tandem by deploying following techniques: a. Improved Regenerative Braking for converting vehicles Kinetic energy into electrical energy using specific algorithms and control techniques b.
Technical Paper

Design & Development of Advanced 48 V Electrified Powertrain for Meeting Future CO2 Emission Requirements

2019-11-21
2019-28-2487
Environmental Protection Agency (EPA) study indicates that a typical passenger vehicle emits about 4.6 metric tons of carbon dioxide per year. ICCT (International Council on Clean Transportation) establishing fleet-average emissions targets of 95 g & 175 g CO2 per kilometer for passenger cars & light commercial vehicles respectively. In view of the same, extensive work has been executed for implementation of 48 V electrified drivetrain technology, which plays an important role to meet stringent CO2 emission norms. A 3-phase permeant magnet Electric Motor and associated inverter, including the Packaging of the battery, for a P3 hybrid rear drive vehicle was developed. The requirements, relating to design of 48 V drivetrain technology, power and duty cycle has been extensively addressed in the paper.
Technical Paper

Development of Dedicated Lubricant for Hydrogen Fuelled Spark Ignition Engine

2019-11-21
2019-28-2511
Hydrocarbon based fossil fuels are being used as the main energy resource, burning of which produces carbon dioxide (CO2) and other emissions harmful to environment. Moreover, CO2 is considered as the main contributor to global warming or greenhouse effect. These are the main drivers behind the ongoing research & development in the area of alternative energy sources. Among various alternatives, Hydrogen is identified as the most promising alternative fuel. Hydrogen is the cleanest fuel having some of the most attractive features such as various methods of production from renewable energy (solar, wind, biomass etc.), from fossil fuels etc. H2 as a fuel can be used in various applications such as spark ignition engine, fuel cells etc. Hydrogen has low ignition energy and ensures easy ignition of the ultra-lean mixture with air.
Technical Paper

Potential for Emission Reduction and Fuel Economy with Micro & Mild HEV

2019-11-21
2019-28-2504
The development of modern combustion engines (spark ignition as well as compression ignition) for vehicles compliant with future oriented emission legislation (BS6, Euro VI, China 6) has introduced several technologies for improvement of both fuel efficiency as well as low emissions combustion strategies. Some of these technologies as there are high pressure multiple injection systems or sophisticated exhaust gas after treatment system imply substantial increase in test and calibration time as well as equipment cost. With the introduction of 48V systems for hybridization a cost- efficient enhancement and, partially, an even attractive alternative is now available. An overview will be given on current technologies as well as on implemented test procedures. The focus will be on solutions which have potential for the Indian market, i.e. solutions which can be implemented with moderate application effort for currently available compact and medium size cars.
Technical Paper

Design and Development of Constant Speed Diesel Engine up to 20 bar BMEP with Inline FIE

2019-11-21
2019-28-2549
Development trend in diesel engine is to achieve more power from same size of engine. With increase in brake mean effective pressure (BMEP), the peak firing pressure will also increase. The methodology to control the peak firing pressure on higher BMEP is the major challenge. We achieved better SFC with CPCB II emission targets on a constant speed engine. This study involves a systematic approach to optimize combustion parameters with a cost effective and robust Inline Fuel Injection System. This paper deals with the strategies applied and experimental results for achieving the power density of 25kW/lit @ 1500 rpm with Inline FIP by keeping lower Peak firing pressure. Various combustion parameters such as Combustion Bowl Geometry, selection of Turbocharger, Swirl, FIP, Nozzle configuration, EGR flow rate, EGR operation strategy, optimizing injection pressures, start of injection, end of injection, injection duration are optimized.
Technical Paper

Mass Optimized Hood Design for Conflicting Performances

2019-11-21
2019-28-2546
Passenger vehicles have stringent safety regulations for pedestrian protection to meet child and adult head impact requirements to minimize injuries. These pedestrian safety requirements often conflict with stiffness and durability performance criteria, which pose a challenge for most automotive OEMs. There is a growing need for performance balancing to meet both these loadcases. This paper uses Multi-Disciplinary Optimization (MDO) approach involving shape variables to achieve optimized performance for stiffness, durability and pedestrian safety. The current study describes an approach that helps reduce time and efforts needed to resolve performance issues between both stiffness/durability and Pedestrian safety requirements. This approach not only helps find a feasible cross-functional solution but also provides an opportunity to reduce the overall development cycle time and mass whenever possible.
Technical Paper

Computerized Experimental Investigation on Performance & Exhaust Emission of Twin Cylinder Adiabatic Diesel Engine Coated with YSZ

2019-11-21
2019-28-2548
The fuel consumption and performance of the Internal Combustion (IC) engine is improved by adopting concepts of an adiabatic engine. An experimental investigation for different load conditions is carried out on a water-cooled, constant-speed, twin-cylinder diesel engine. This research is intended to emphasize energy balance and emission characteristic for standard uncoated base engine and adiabatic engine. The inner walls of diesel engine combustion chamber are thermally insulated by a top coat of Metco 204NS yttria-stabilized zirconia (Y2O3ZrO2) powder (YSZ) of a thickness of 350 mm using plasma spray coating technology. The same combustion chamber is also coated with thermal barrier coating (TBC) bond coats of AMDRY 962 Nickle chromium aluminum yttria of thickness of 150 mm. The NiCrAlY powder specially designed to produce coating’s resistance to hot corrosion.
Technical Paper

Light-Weighting of Additive Manufactured Automotive Fixtures through Topology Optimization Techniques

2019-11-21
2019-28-2544
Rapidly enhancing engineering techniques to manufacture components in quick turnaround time have gained importance in recent times. Manufacturing strategies like Additive Manufacturing (AM) are a key enabler for achieving them. Unlike traditional manufacturing techniques like injection molding, casting etc.; AM unites advanced materials, machines, and software which will be critical for the fourth industrial revolution known as Industry 4.0. Successful application of AM involves a specific combination and understanding of these three key elements. In this paper the AM approach used is Fused Deposition Modelling (FDM). Since material costs contribute to 60% of the overall FDM costs, it becomes a necessity to optimize the parts. This paper reports the case studies of 3D-printed Automotive Fixtures which utilize computational methods (CAE), topology optimization and FDM constrains (build directions) to manufacture the part.
Technical Paper

Heat Shield Insulation for Thermal Challenges in Automotive Exhaust System

2019-11-21
2019-28-2539
While advanced automotive system assemblies contribute greater value to automobile safety, reliability, emission/noise performance and comfort, they are also generating higher temperatures that can reduce the functionality and reliability of the system over time. Thermal management and proper insulation are extremely important and highly demanding for the functioning of BSVI and RDE vehicles. Frugal engineering is mandatory to develop heat shield in the exhaust system with minimum heat loss. Heat shield design parameters such as insulation material type, insulation material composition, insulation thickness, insulation density, air gap thickness and outer layer material are studied for their influences on skin temperature using mathematical calculation, CFD simulation and measurement. Simulation results are comparable to that of the test results within 10% deviation.
Technical Paper

Combustion Optimization and In-Cylinder NOx and PM Reduction by Using EGR and Split Injection Techniques

2019-11-21
2019-28-2560
Nowadays, the major most challenge in the diesel engine is the oxides of nitrogen (NOx) and particulate matter (PM) trade-off, with minimal reduction in Power and BSFC. Modern day engines also rely on expensive after-treatment devices, which may decrease the performance and increase the BSFC. In this paper, combustion optimization and in-cylinder emission control by introducing the Split injection technique along with EGR is carried out by 1-D (GT- POWER) simulation. Experiments were conducted on a 3.5 kW Single-cylinder naturally aspirated CRDI engine at the different load conditions. The Simulation model incorporates detailed pressure (Burn rate) analysis for different cases and various aspects of ignition delay, premixed and mixing controlled combustion rate, the injection rate affecting oxides of nitrogen and particulate matter.
X