Refine Your Search

Search Results

Viewing 1 to 11 of 11
Standard

Requirements for Plastic Encapsulated Discrete Semiconductors in Space Applications

2019-08-07
CURRENT
AS6294/3
This document establishes the requirements for screening, qualification, and lot acceptance testing of Plastic Encapsulated Discrete Semiconductors (PEDS) for use in space application environments. The scope of this document is intended for standard silicon based technology only, but the process and methodology described within can be adopted for other technologies such as Silicon Carbide, Gallium Nitride, and Gallium Arsenide. However, when non-silicon based technology parts are being used, the device characterization shall be modified, and it is recommended to use available industry standards based upon published research/testing reports for those technology to address applicable physics of failure.
Standard

Failure Rate Estimating

2019-07-15
WIP
SSB1_004B
This document is an annex to EIA Engineering Bulletin SSB-1, Guidelines for Using Plastic Encapsulated Microcircuits and Semiconductors in Military, Aerospace and Other Rugged Applications (the latest revision). Failure-Mechanism-Driven Reliability Monitoring draws upon the concepts and implementation of line controls, process stability, and effective monitoring programs in lieu of qualifying a product based solely on a fixed list of tests. A supplier must identify those failure mechanisms that may be actuated through a given product / process change(s), and must design and implement reliability tests adequate to assess the impact of those failure mechanisms on system level reliability. In order for this to be effective, the supplier establishes a thorough understanding of and linkage to their reliability monitoring program.
Standard

Reducing the Risk of Tin Whisker-Induced Failures in Electronic Equipment

2014-10-01
CURRENT
GEIAGEB0002
This Bulletin provides a brief description of tin whisker formation and describes various methods recommended by government and industry to reduce the risk of tin whisker-induced failures in electronic hardware. It is not a mandate nor does it contain any requirements. A tin whisker is a single crystal that emerges from tin-finished surfaces. Tin whiskers can pose a serious reliability risk to electronic assemblies that have pure tin finish. The general risks fall into several categories: [1, 2, 3, 8, 16] Short Circuits: The whisker can create a short circuit, either by 1) growing from an area at one potential to an area at another or 2) breaking free and later bridging these areas. In some cases, these shorts may be permanent and cause catastrophic system failures. A transient short may result if the available current exceeds the fusing current of the whisker, and the whisker can fuse open.
Standard

Environmental Tests and Associated Failure Mechanisms

2014-09-12
CURRENT
SSB1_002
This document is an annex to EIA Engineering Bulletin SSB-1, Guidelines for Using Plastic Encapsulated Microcircuits and Semiconductors in Military, Aerospace and Other Rugged Applications. This document provides reference information concerning the environmental stresses associated with tests specifically designed to apply to (or have unique implications for) plastic encapsulated microcircuits and semiconductors, and the specific failures induced by these environmental stresses.
Standard

Qualification and Reliability Monitors

2014-09-12
CURRENT
SSB1_001
This document is an annex to EIA Engineering Bulletin SSB-1, Guidelines for Using Plastic Encapsulated Microcircuits and Semiconductors in Military, Aerospace and Other Rugged Applications (the latest revision). The scope of this document is to establish the recommended minimum qualification and monitoring testing of plastic encapsulated microcircuits and discrete semiconductors suitable for potential use in many rugged, military, severe, or other environments.
Standard

Failure Rate Estimating

2009-04-01
CURRENT
SSB1_004A
This document is an annex to EIA Engineering Bulletin SSB-1, Guidelines for Using Plastic Encapsulated Microcircuits and Semiconductors in Military, Aerospace and Other Rugged Applications (the latest revision). Failure-Mechanism-Driven Reliability Monitoring draws upon the concepts and implementation of line controls, process stability, and effective monitoring programs in lieu of qualifying a product based solely on a fixed list of tests. A supplier must identify those failure mechanisms that may be actuated through a given product / process change(s), and must design and implement reliability tests adequate to assess the impact of those failure mechanisms on system level reliability. In order for this to be effective, the supplier establishes a thorough understanding of and linkage to their reliability monitoring program.
X