Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Standard

Requirements for Plastic Encapsulated Discrete Semiconductors in Space Applications

2019-08-07
CURRENT
AS6294/3
This document establishes the requirements for screening, qualification, and lot acceptance testing of Plastic Encapsulated Discrete Semiconductors (PEDS) for use in space application environments. The scope of this document is intended for standard silicon based technology only, but the process and methodology described within can be adopted for other technologies such as Silicon Carbide, Gallium Nitride, and Gallium Arsenide. However, when non-silicon based technology parts are being used, the device characterization shall be modified, and it is recommended to use available industry standards based upon published research/testing reports for those technology to address applicable physics of failure.
Standard

Failure Rate Estimating

2019-07-15
WIP
SSB1_004B
This document is an annex to EIA Engineering Bulletin SSB-1, Guidelines for Using Plastic Encapsulated Microcircuits and Semiconductors in Military, Aerospace and Other Rugged Applications (the latest revision). Failure-Mechanism-Driven Reliability Monitoring draws upon the concepts and implementation of line controls, process stability, and effective monitoring programs in lieu of qualifying a product based solely on a fixed list of tests. A supplier must identify those failure mechanisms that may be actuated through a given product / process change(s), and must design and implement reliability tests adequate to assess the impact of those failure mechanisms on system level reliability. In order for this to be effective, the supplier establishes a thorough understanding of and linkage to their reliability monitoring program.
Standard

Diminishing Manufacturing Sources and Material Shortages (DMSMS) Management Practices

2015-07-01
CURRENT
GEB1
This document includes a standard set of management practices that can be used, or espoused, by the OEMs for use during the design and development of electronic systems to mitigate the effects of future Diminishing Manufacturing Sources and Material Shortages (DMSMS). While this document focuses primarily on microelectronic devices, the methods described here may also apply to other commodities.
Standard

Environmental Tests and Associated Failure Mechanisms

2014-09-12
CURRENT
SSB1_002
This document is an annex to EIA Engineering Bulletin SSB-1, Guidelines for Using Plastic Encapsulated Microcircuits and Semiconductors in Military, Aerospace and Other Rugged Applications. This document provides reference information concerning the environmental stresses associated with tests specifically designed to apply to (or have unique implications for) plastic encapsulated microcircuits and semiconductors, and the specific failures induced by these environmental stresses.
Standard

Qualification and Reliability Monitors

2014-09-12
CURRENT
SSB1_001
This document is an annex to EIA Engineering Bulletin SSB-1, Guidelines for Using Plastic Encapsulated Microcircuits and Semiconductors in Military, Aerospace and Other Rugged Applications (the latest revision). The scope of this document is to establish the recommended minimum qualification and monitoring testing of plastic encapsulated microcircuits and discrete semiconductors suitable for potential use in many rugged, military, severe, or other environments.
Standard

Acceleration Factors

2014-09-12
CURRENT
SSB1_003A
This document is an annex to EIA Engineering Bulletin SSB-1, Guidelines for Using Plastic Encapsulated Microcircuits and Semiconductors in Military, Aerospace and Other Rugged Applications (the latest revision). This document provides reference information concerning acceleration factors commonly used by device manufacturers to model failure rates in conjunction with statistical reliability monitoring. These acceleration factors are frequently used by OEMs in conjunction with physics of failure reliability analysis to assess the suitability of plastic encapsulated microcircuits and semiconductors for specific end use applications.
Standard

Failure Rate Estimating

2009-04-01
CURRENT
SSB1_004A
This document is an annex to EIA Engineering Bulletin SSB-1, Guidelines for Using Plastic Encapsulated Microcircuits and Semiconductors in Military, Aerospace and Other Rugged Applications (the latest revision). Failure-Mechanism-Driven Reliability Monitoring draws upon the concepts and implementation of line controls, process stability, and effective monitoring programs in lieu of qualifying a product based solely on a fixed list of tests. A supplier must identify those failure mechanisms that may be actuated through a given product / process change(s), and must design and implement reliability tests adequate to assess the impact of those failure mechanisms on system level reliability. In order for this to be effective, the supplier establishes a thorough understanding of and linkage to their reliability monitoring program.
X