Refine Your Search

Search Results

Viewing 1 to 4 of 4
Standard

Test Procedure to Measure Permeation of Elastomeric Hose or Tube by Weight Loss

2019-04-01
CURRENT
J2663_201904
This test method is intended for measuring fuel permeation at elevated temperature through low permeating hose or tubing samples of elastomeric or composite construction. The expected accuracy of the method is about ±10% of the sample permeation rate. Hose permeation testing can be done two ways: Method A – Plug and Fill or Method B – using a fuel reservoir. Method A involves plugging one end of the hose, filling the sample to about 90% full with test fuel, plugging the other end, and then exposing the plugged sample to a desired test temperature, with the weight loss measured over time. Method B involves plugging one end of a hose, and then connecting the other end to a fuel reservoir. The hose sample and reservoir are then exposed to a desired test temperature with the weight loss measured over time. This procedure presents a recommended plug design that permits inserting the plugs prior to adding the test fluid.
Standard

Test Procedure to Measure the Fuel Permeability of Materials by the Cup Weight Loss Method

2018-12-12
CURRENT
J2665_201812
This test standard covers the procedure for measuring the permeation of fuel or fuel surrogates through test samples of elastomeric, plastic or composite materials, up to about 3 mm thick. The method involves filling a test cup with the test fluid (fuel or fuel surrogate), sealing test sample over the open end of the cup, and then placing the sealed container into an oven at the desired test temperature and measuring the weight loss over time. Permeation rates are calculated from the rate of weight loss and the exposed area of the test sample. Standard permeation test temperatures are 40 °C and 60 °C. Standard test fluids are Fuel C, Fuel CE10 and Fuel CM15. Other fluids, such as Fuel CMTBE15, and other volatile liquids may be tested according to this procedure as desired (SAE J1681). The method is not applicable for measuring permeation of higher boiling materials that will not completely evaporate from the exterior surface of the sample at the test temperature.
Standard

Test Procedure to Measure Permeation of Elastomeric Hose or Tube by Weight Loss

2010-06-16
HISTORICAL
J2663_201006
This test method is intended for measuring fuel permeation at elevated temperature through low permeating hose or tubing samples of elastomeric or composite construction. The expected accuracy of the method is about ±10% of the sample permeation rate. Hose permeation testing can be done two ways: Method A – Plug and Fill or Method B – using a fuel reservoir. Method A involves plugging one end of the hose, filling the sample to about 90% full with test fuel, plugging the other end, and then exposing the plugged sample to a desired test temperature, with the weight loss measured over time. Method B involves plugging one end of a hose, and then connecting the other end to a fuel reservoir. The hose sample and reservoir are then exposed to a desired test temperature with the weight loss measured over time. This procedure presents a recommended plug design that permits inserting the plugs prior to adding the test fluid.
Standard

Test Procedure to Measure the Fuel Permeability of Materials by the Cup Weight Loss Method

2006-10-13
HISTORICAL
J2665_200610
This test standard covers the procedure for measuring the permeation of fuel or fuel surrogates through test samples of elastomeric, plastic or composite materials, up to about 3 mm thick. The method involves filling a test cup with the test fluid (fuel or fuel surrogate), sealing test sample over the open end of the cup, and then placing the sealed container into an oven at the desired test temperature and measuring the weight loss over time. Permeation rates are calculated from the rate of weight loss and the exposed area of the test sample. Standard permeation test temperatures are 40 °C and 60 °C. Standard test fluids are Fuel C, Fuel CE10 and Fuel CM15. Other fluids, such as Fuel CMTBE15, and other volatile liquids may be tested according to this procedure as desired (SAE J1681). The method is not applicable for measuring permeation of higher boiling materials that will not completely evaporate from the exterior surface of the sample at the test temperature.
X