Refine Your Search

Topic

Author

Search Results

Standard

Low Voltage Primary Cable

2024-04-25
WIP
J1128
This SAE Standard covers low voltage primary cable intended for use at a nominal system voltage of 60 VDC (25 VAC) or less in surface vehicle electrical systems. The tests are intended to qualify cables for normal applications with limited exposure to fluids and physical abuse.
Standard

Low Voltage Battery Cable

2024-04-25
WIP
J1127
This SAE Standard covers low voltage battery cable intended for use at a nominal system voltage of 60 VDC (25 VAC) or less in surface vehicle electrical systems. The tests are intended to qualify cables for normal applications with limited exposure to fluids and physical abuse.
Standard

Liquid Leak Tightness Evaluation Methodology for EV Battery Packs Informational Report

2024-04-23
CURRENT
J3277_202404
This technical information report (IR) presents a methodology to evaluate battery pack liquid leak tightness attributes to be used in a production line to satisfy the functional requirement for IPX7, water ingress requirement, and no sustainable coolant leakage for coolant circuits. The Equivalent Channel Method is used as a suggested production leak tightness requirement for a given battery pack design that will correlate and assure that the battery pack meets or exceeds its functional requirement. Obtaining the specific geometry of the Equivalent Channel (EC) for a given battery pack is done analytically and empirically in consideration of the product design limitations. This document is a precursor to J3277-1, which will present the practices to qualify that product leak tightness is equal or better than the maximum allowed EC for that product using applicable and commercially available leak test technologies.
Standard

Automotive Battery Recycling Identification and Cross Contamination Prevention

2024-03-25
WIP
J3071
This SAE Battery Identification and Cross Contamination Prevention document is intended to provide information that may be applicable to all types of Rechargeable Energy Storage System (RESS) devices. It is important to develop a system that can facilitate sorting by chemistry. The recycler is interested in the chemistry of the RESS. This is true for the recyclers of Lead Acid, Lithium Ion, Nickel Cadmium etc. Thus recyclers of RESS will receive RESS from automotive, commercial, and industrial applications. These RESS have the potential to be contaminated with a RESS of an incompatible chemistry. It is recognized that mitigation methods to reduce or eliminate the introduction of incompatible chemistries into a given recycling stream would also benefit safety and the environment.
Standard

Digital Annex of Diagnostic Trouble Code Definitions and Failure Type Byte Definitions

2024-03-06
CURRENT
J2012DA_202403
The J2012 Digital Annex of Diagnostic Trouble Code Definitions Spreadsheet provides DTC information in an excel format for use in your organization's work processes. The column headings include the same information as contained in the J2012 standard. Information in the excel spreadsheet will be updated several times annually and the spreadsheet includes a column heading denoting which DTCs have been updated in the current version.
Standard

Recommended Practice for Measuring Fuel Consumption and Range of Fuel Cell and Hybrid Fuel Cell Vehicles Fueled by Compressed Gaseous Hydrogen

2024-02-06
CURRENT
J2572_202402
This SAE Recommended Practice establishes uniform procedures for testing fuel cell and hybrid fuel cell electric vehicles, excluding low speed vehicles, designed primarily for operation on the public streets, roads and highways. The procedure addresses those vehicles under test using compressed hydrogen gas supplied by an off-board source or stored and supplied as a compressed gas onboard. This practice provides standard tests that will allow for determination of fuel consumption and range based on the US Federal Emission Test Procedures, using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS). Chassis dynamometer test procedures are specified in this document to eliminate the test-to-test variations inherent with track testing, and to adhere to standard industry practice for fuel consumption and range testing.
Standard

Reduced Effort Power Steering Modifications and Backup Systems (Hydraulic and/or Electric)

2024-02-06
CURRENT
J2672_202402
This SAE Information Report relates to a special class of automotive adaptive equipment which consists of modifications to the power steering system provided as original equipment on personally licensed vehicles. These modifications are generically called “modified effort steering” or “reduced effort power steering.” The purpose of the modification is to alter the amount of driver effort required to steer the vehicle. Retention of reliability, ease of use for physically disabled drivers and maintainability are of primary concern. As an Information Report, the numerical values for performance measurements presented in this report and in the test procedure in the appendices, while based upon the best knowledge available at the time, have not been validated.
Standard

Vehicle Platform Power Management

2023-12-08
WIP
J3311
This Information Report will define ECU interfaces and functions necessary to enable OEMs to develop and deploy context-aware, vehicle-wide optimal power generation and consumption while allowing differentiation in implementation.
Standard

A Guide to the Reliability-Centered Maintenance (Rcm) Standard

2023-11-08
WIP
JA1012
SAE JA1012 (“A Guide to the Reliability-Centered Maintenance (RCM) Standard”) amplifies and clarifies each of the key criteria listed in SAE JA1011 (“Evaluation Criteria for RCM Processes”), and summarizes additional issues that must be addressed in order to apply RCM successfully.
Standard

Evaluation Criteria for Reliability-Centered Maintenance (RCM) Processes

2023-11-08
WIP
JA1011
This SAE Standard for Reliability Centered Maintenance (RCM) is intended for use by any organization that has or makes use of physical assets or systems that it wishes to manage responsibly.RCM is a specific process used to identify the policies which must be implemented to manage the failure modes which could cause the functional failure of any physical asset in a given operating context. This document is intended to be used to evaluate any process that purports to be an RCM process, in order to determine whether it is a true RCM process. This document supports such an evaluation by specifying the minimum characteristics that a process must have in order to be an RCM process.
Standard

Ignition Cable Assemblies

2023-10-20
CURRENT
J2032_202310
This SAE Standard specifies the general requirements and test methods for non-shielded, high-voltage ignition cable assemblies.
Standard

Reaffirmation Ballot

2023-09-28
WIP
F2023C1Reaffirm
Reaffirmation Ballot for AS85049/147A and AS85049/152A
Standard

Storage Batteries

2023-09-28
CURRENT
J537_202309
This SAE Standard serves as a guide for testing procedures of automotive 12 V storage batteries. The information contained herein was originally developed based on traditional ICE operation but can be more broadly applicable to other vehicle architectures. Although the test procedures contained herein are written from the standpoint of a 12 V nominal battery, they can be scaled for batteries with different nominal voltages.
Standard

Use Cases for Communication Between Plug-in Vehicles and Off-Board DC Charger

2023-08-31
CURRENT
J2836/2_202308
This SAE Information Report, SAE J2836-2, establishes use cases and general information for communication between plug-in electric vehicles (PEVs) and the DC off-board charger. Where relevant, this document notes, but does not formally specify, interactions between the vehicle and vehicle operator. This applies to the off-board DC charger for conductive charging, which supplies DC current to the vehicle battery of the electric vehicle through a SAE J1772 hybrid coupler or SAE J1772 AC Level 2-type coupler on DC power lines, using the AC power lines or the pilot line for power line communication (PLC), or dedicated communication lines that are further described in SAE J2847-2. The specification supports DC energy transfer via forward power flow (FPF) from grid-to-vehicle. The relationship of this document to the others that address PEV communications is further explained in Section 5.
Standard

Starter Motor Application Considerations

2023-08-23
CURRENT
J1375_202308
This SAE Recommended Practice identifies some basic and general conditions that should be considered when making electrical starter motor applications.
Standard

Air Starter Motor Test Procedure

2023-08-23
CURRENT
J2437_202308
This SAE Recommended Practice provides a standard procedure for testing the output performance and plotting the performance curve of air starting motors.
Standard

Hydrogen Surface Vehicle to Station Communications Hardware and Software

2023-08-03
WIP
J2799
This standard specifies the communications hardware and software requirements for fueling hydrogen surface vehicles (HSV), such as fuel cell vehicles, but may also be used where appropriate, with heavy-duty vehicles (e.g., busses) and industrial trucks (e.g., forklifts) with compressed hydrogen storage. It contains a description of the communications hardware and communications protocol that may be used to refuel the HSV. The intent of this standard is to enable harmonized development and implementation of the hydrogen fueling interfaces.This standard is intended to be used in conjunction with the hydrogen fueling protocols in SAE J2601 and J2601/5, and nozzles and receptacles conforming with SAE J2600.
Standard

Performance Characterization of Electrified Powertrain Motor-Drive Subsystem

2023-08-01
CURRENT
J2907_202308
This document was developed to provide a method of obtaining repeatable measurements that accurately reflects the performance of a propulsion electric drive subsystem, whose output is used in an electrified vehicle regardless of complexity or number of energy sources. The purpose is to provide a familiar and easy-to-understand performance rating. Whenever there is an opportunity for interpretation of the document, a good faith effort shall be made to obtain the typical in-service performance and characteristics and avoid finding the best possible performance under the best possible conditions. Intentional biasing of operating parameters or assembly tolerances to optimize performance for this test shall not be considered valid results in the scope of this document.
X