Refine Your Search

Topic

Author

Search Results

Standard

OnQue Digital Standards System - Standards

2024-04-16
/onque-digital-standards
Now Available from SAE International, SAE OnQue is a revolutionary digital standards solution that optimizes the way automotive and aerospace engineers access standards.
Standard

Component Nomenclature - Skidder - Grapple

2024-04-10
CURRENT
J1111_202404
This SAE Standard characterizes grapple skidders and identifies the major components and parts most commonly associated therewith. Illustrations used herein are not intended to include all existing commercial machines or to be exactly descriptive of any particular machine. They have been included to facilitate application of this document
Standard

Forced Air or Forced Air/Fluid Equipment for Removal of Frozen Contaminants

2024-03-29
WIP
AIR6284A
This SAE Aerospace Information Report (AIR) covers forced air technology including: reference material, equipment, safety, operation, and methodology. This resource document is intended to provide information and minimum safety guidelines regarding use of forced air or forced air/fluid equipment to remove frozen contaminants. During the effective period of this document, relevant sections herein should be considered and included in all/any relevant SAE documents.
Standard

Contiguous Aircraft/System Development Process Example

2024-03-12
CURRENT
AIR6110A
This AIR provides a detailed example of the aircraft and systems development for a function of a hypothetical S18 aircraft. In order to present a clear picture, an aircraft function was broken down into a single system. A function was chosen which had sufficient complexity to allow use of all the methodologies, yet was simple enough to present a clear picture of the flow through the process. This function/system was analyzed using the methods and tools described in ARP4754A/ED-79A. The aircraft level function is “Decelerate Aircraft On Ground” and the system is the braking system. The interaction of the braking system functions with the aircraft are identified with the relative importance based on implied aircraft interactions and system availabilities at the aircraft level. This example does not include validation and verification of the aircraft level hazards and interactions with the braking system.
Standard

Motor Vehicle Brake Fluid

2024-03-12
CURRENT
J1703_202403
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycol ethers, and appropriate inhibitors, for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM).
Standard

Digital Annex of Diagnostic Trouble Code Definitions and Failure Type Byte Definitions

2024-03-06
CURRENT
J2012DA_202403
The J2012 Digital Annex of Diagnostic Trouble Code Definitions Spreadsheet provides DTC information in an excel format for use in your organization's work processes. The column headings include the same information as contained in the J2012 standard. Information in the excel spreadsheet will be updated several times annually and the spreadsheet includes a column heading denoting which DTCs have been updated in the current version.
Standard

Standard Sheet Steel Thickness and Tolerances

2024-03-04
CURRENT
J1058_202403
This SAE Recommended Practice provides an orderly series for designating the thickness of unocated and coated hot-rolled and cold-rolled sheet and strip. This document also provides methods for specifying thickness tolerances.
Standard

SAE Child Passenger Safety Glossary

2024-03-01
CURRENT
J2939_202403
To harmonize and define terminology associated with occupant protection for children for vehicle manufacturers and child restraint manufacturers in the United States and Canada.
Standard

Worldwide On-Board Diagnostic Requirements Overview

2024-02-28
CURRENT
J3248_202402
This document focuses on the latest in-force regulations. However, in addition to latest information, the report may include historical information. As regulations are superseded, the previous entry will remain to help understand the change in requirements over time. The initial focus of the document includes light-, medium-, and heavy-duty on-road vehicles with all propulsion systems. The document will include information from the United States and Canada, with later publications expanding to other regions. Forecasts for future regulations will not be included in the spreadsheet but be kept in a separate document. The document may be expanded to other types of applications/vehicles as information becomes available.
Standard

Unmanned Systems (UxS) Control Segment (UCS) Architecture: Version Description Document

2024-02-23
CURRENT
AIR6520A
Governance of the Unmanned Aircraft System (UAS) Control Segment (UCS) Architecture was transferred from the United States Office of the Secretary of Defense (OSD) to SAE International in April 2015. Consequently, a subset of the UCS Architecture Library Release 3.4(PR) has been published under SAE as the Unmanned Systems (UxS) Control Segment (UCS) Architecture, AS6512. This Version Description Document (VDD) describes the correspondence and differences between the two architecture libraries.
Standard

Internal Combustion Engines - Piston Ring-Grooves

2024-02-16
CURRENT
J2275_202402
There is no ISO standard equivalent to this SAE Standard. This SAE Standard identifies and defines the most commonly used terms for piston ring-groove characteristics, specifies dimensioning for groove widths, and demonstrates the methodology for calculation of piston groove root diameter. The requirements of this document apply to pistons and rings of reciprocating internal combustion engines and compressors working under analogous conditions, up to and including 200 mm diameter and 4.5 mm width for compression rings and 8.0 mm width for oil rings. The specifications in this document assume that components are measured at an ambient temperature of 20 °C (68 °F). Tolerances specified in this document represent practical functional limits and do not imply process capabilities.
Standard

Recommended Practice for Measuring Fuel Consumption and Range of Fuel Cell and Hybrid Fuel Cell Vehicles Fueled by Compressed Gaseous Hydrogen

2024-02-06
CURRENT
J2572_202402
This SAE Recommended Practice establishes uniform procedures for testing fuel cell and hybrid fuel cell electric vehicles, excluding low speed vehicles, designed primarily for operation on the public streets, roads and highways. The procedure addresses those vehicles under test using compressed hydrogen gas supplied by an off-board source or stored and supplied as a compressed gas onboard. This practice provides standard tests that will allow for determination of fuel consumption and range based on the US Federal Emission Test Procedures, using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS). Chassis dynamometer test procedures are specified in this document to eliminate the test-to-test variations inherent with track testing, and to adhere to standard industry practice for fuel consumption and range testing.
X