Refine Your Search

Topic

Author

Search Results

Standard

OnQue Digital Standards System - Standards

2024-04-24
/onque-digital-standards
Now Available from SAE International, SAE OnQue is a revolutionary digital standards solution that optimizes the way automotive and aerospace engineers access standards.
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices

2024-04-23
WIP
J3105
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer, primarily for vehicles using a conductive ACD connection capable of transferring DC power. It defines conductive power transfer methods, including the infrastructure electrical contact interface, the vehicle connection interface, the electrical characteristics of the DC supply, and the communication system. It also covers the functional and dimensional requirements for the vehicle connection interface and supply equipment interface. New editions of the documents shall be backwards compatible with the older editions. There are also sub-documents which are identified by a SAE J3105/1, SAE J3105/2, and SAE J3105/3. These will be specific requirements for a specific interface defined in the sub-document.
Standard

Fuel Flow Rate Measurement System

2024-04-23
CURRENT
AS407E
This SAE Aerospace Standard (AS) defines minimum performance standards (MPS) for fuel flowmeters, fuel flow indicators, and fuel flow transmitters. The fuel flow indicators and transmitters are intended for use in 14 CFR Part 23, 25, 27, and 29 aircraft equipped with reciprocating and turbine engines. Multiple function displays are not within the scope of this SAE Aerospace Standard (refer to AS6296).
Standard

Liquid Leak Tightness Evaluation Methodology for EV Battery Packs Informational Report

2024-04-23
CURRENT
J3277_202404
This technical information report (IR) presents a methodology to evaluate battery pack liquid leak tightness attributes to be used in a production line to satisfy the functional requirement for IPX7, water ingress requirement, and no sustainable coolant leakage for coolant circuits. The Equivalent Channel Method is used as a suggested production leak tightness requirement for a given battery pack design that will correlate and assure that the battery pack meets or exceeds its functional requirement. Obtaining the specific geometry of the Equivalent Channel (EC) for a given battery pack is done analytically and empirically in consideration of the product design limitations. This document is a precursor to J3277-1, which will present the practices to qualify that product leak tightness is equal or better than the maximum allowed EC for that product using applicable and commercially available leak test technologies.
Standard

High Flow Liquid Hydrogen Fueling Couplings for Aerospace and Heavy Transport Applications

2024-04-15
WIP
AIR8999
The SAE AE-5CH Taskgroup has determined that high flow liquid hydrogen fueling couplings need to be developed in order to fast fill aircraft at the airport. Though the flow rates from a current liquid hydrogen bayonet connect may reach the lower bound flow rates of regional aircraft, there are some shortcomings to this connector for aerospace. For this reason a new specification for flow rates for regional to narrowbody (and potentially later widebody) are to be developed in this documenet. Harmonization for lower flow rates (such as up to 20kg/minute) are planned to be harmonized with ground vehicle fueling such as with ISO 13984. Within this document,coupling descriptions including Flow rates from 84 to 200 kg/minute will be evaluated (and potentially higher), and requirements and testing and safety targets will be specified.
Standard

Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion

2024-04-02
WIP
ARP6420A
The turbine-engine-inlet flow distortion descriptors summarized in this document apply to the effects of inlet total-pressure, planar-wave, and total-temperature distortions. Guidelines on stability margin, destabilizing influences, types and purposes of inlet data, AIP definition, and data acquisition and handling are summarized from AIR5866, AIR5867, ARP1420, and AIR1419. The degree to which these recommendations are applied to a specific program should be consistent with the complexity of the inlet/engine integration. Total-pressure distortion is often the predominant destabilizing element that is encountered and is often the only type of distortion to be considered, i.e, not all types of distortion need to be considered for all vehicles.
Standard

Forced Air or Forced Air/Fluid Equipment for Removal of Frozen Contaminants

2024-03-29
WIP
AIR6284A
This SAE Aerospace Information Report (AIR) covers forced air technology including: reference material, equipment, safety, operation, and methodology. This resource document is intended to provide information and minimum safety guidelines regarding use of forced air or forced air/fluid equipment to remove frozen contaminants. During the effective period of this document, relevant sections herein should be considered and included in all/any relevant SAE documents.
Standard

Battery Electric Vehicle Energy Consumption and Range Test Procedure

2024-03-26
WIP
J1634
This SAE Recommended Practice establishes uniform procedures for testing battery electric vehicles (BEVs) which are capable of being operated on public and private roads. The procedure applies only to vehicles using batteries as their sole source of power. It is the intent of this document to provide standard tests which will allow for the determination of energy consumption and range for light-duty vehicles (LDVs) based on the federal emission test procedure (FTP) using the urban dynamometer driving schedule (UDDS) and the highway fuel economy driving schedule (HFEDS) and provide a flexible testing methodology that is capable of accommodating additional test cycles as needed. Additionally, this SAE Recommended Practice provides five-cycle testing guidelines for vehicles performing supplementary testing on the US06, SC03, and cold FTP procedure. Realistic alternatives should be allowed for new technology.
Standard

Vision Factors Considerations in Rearview Mirror Design

2024-03-18
CURRENT
J985_202403
The design and location of rear-viewing mirrors or systems, and the presentation of the rear view to the driver can best be achieved if the designer and the engineer have adequate references available on the physiological functions of head and eye movements and on the perceptual capabilities of the human visual system. The following information and charts are provided for this purpose. For more complete information of the relationship of vision to forward vision, see SAE SP-279.
Standard

Procedure for the Analysis and Evaluation of Gaseous Emissions from Aircraft Engines

2024-03-18
CURRENT
ARP1533D
SAE Aerospace Recommended Practice ARP1533 is a procedure for the analysis and evaluation of the measured composition of the exhaust gas from aircraft engines. Measurements of carbon monoxide, carbon dioxide, total hydrocarbon, and the oxides of nitrogen are used to deduce emission indices, fuel-air ratio, combustion efficiency, and exhaust gas thermodynamic properties. The emission indices (EI) are the parameters of critical interest to the engine developers and the atmospheric emissions regulatory agencies because they relate engine performance to environmental impact. While this procedure is intended to guide the analysis and evaluation of the emissions from aircraft gas turbine engines (burning conventional hydrocarbon based liquid fuels), the methodology may be applied to the analysis of the exhaust products of any hydrocarbon/air combustor.
Standard

Test Method for the Determination of Total Acidity in Polyol Ester and Diester Gas Turbine Lubricants by Automatic Potentiometric Titration

2024-03-18
CURRENT
ARP5088C
The test method describes the procedure for determination of the total acid number (TAN) of new and degraded polyol ester and diester-based gas turbine lubricants by the potentiometric titration technique. The method was validated to cover an acidity range of 0.05 to 6.0 mg KOH g-1. The method may also be suitable for the determination of acidities outside of this range and for other classes of lubricants.
Standard

Digital Annex of Diagnostic Trouble Code Definitions and Failure Type Byte Definitions

2024-03-06
CURRENT
J2012DA_202403
The J2012 Digital Annex of Diagnostic Trouble Code Definitions Spreadsheet provides DTC information in an excel format for use in your organization's work processes. The column headings include the same information as contained in the J2012 standard. Information in the excel spreadsheet will be updated several times annually and the spreadsheet includes a column heading denoting which DTCs have been updated in the current version.
Standard

Aerospace Vehicle Wiring, Lessons Learned

2024-03-04
CURRENT
AIR6808A
This AIR is limited to the requirements of AS50881 and examines these requirements, providing rationale behind them. AS50881 is only applicable to the aircraft EWIS. Pods and other devices that can be attached to an aircraft are considered as part of the aircraft equipment design. Its scope does not include wiring inside of airborne electronic equipment but does apply to wiring externally attached to such equipment. The AS50881 scope does not include attached devices but does include the interface between the pod/equipment and aircraft wiring. Section 3.3.5 addresses components such as antennas and other similar equipment that were once supplied as Government Furnished Aeronautical/Aerospace Equipment (GFAE).
Standard

SAE Child Passenger Safety Glossary

2024-03-01
CURRENT
J2939_202403
To harmonize and define terminology associated with occupant protection for children for vehicle manufacturers and child restraint manufacturers in the United States and Canada.
Standard

Standard Four-Letter Coding as an Identification Method for Alternative Fuel Vehicles

2024-03-01
CURRENT
J3108/1_202403
SAE J3108 RP provides fuel and hazard guidance for first and second responders of incidents associated with alternative fueled vehicles. The intent of this SAE J3108-1 RP is to remain with the limited number of seven intuitive and colored letters contained in each of the first two letter positions (72=49). However, the use of four letters plus nine digits (to not use either 0 or o) permits up to 1185921 unique identifiers (334) for future expansion. The RP is not intended to replace the standards for SAE J2990 format emergency response guide (ERG) created by automotive manufacturers for use at the scene of an emergency. Automotive OEMs are encouraged to reference this RP for industry design guidance when creating vehicle requirements and ERGs. This coding should be consistent with other vehicle badging with the goal of providing additional clarity.
X