Refine Your Search

Topic

Search Results

Video

Optimal Scheduling and Delay Analysis for AFDX End-Systems

2021-03-20
The present work aims at the reduction of transmission delay at the level of AFDX ES (Avionics Full Duplex Switched Ethernet End-Systems). To this end, two approaches, namely Network Calculus and response time analysis (RTA), are employed in the computation of upper bound delay. To evaluate the delay regarding different scheduling policies, the arrival curve of the flow on output of ES is established for given traffic shaping algorithm and service mode. Computational analysis shows that Bandwidth Allocation Gap (BAG) based scheduling is the optimal policy at the level of AFDX ES, which leads to the tightest output arrival curve among all possible scheduling policies. BAG-based scheduling consists in assigning higher priority to virtual links with smaller BAG thus corresponding to the well known Rate-Monotonic Algorithm. Furthermore, schedulability criterion are established based on RTA.
Video

Spotlight on Design Insight: Diagnostics and Prognostics: Telematics Deep Dive

2015-05-04
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. When automotive and aerospace manufacturers look for a material with superior lightweight and strength characteristics, they often look no further than composite materials. In the episode “Composite Materials: New Trends in Automotive Design” (10:20), an engineer from Molded Fiber Glass Research Company demonstrates how they develop and test the properties of composite materials, and an engineer at MirTEQ Incorporated discusses designing molds for an aftermarket composite part.
Video

Spotlight on Design: Diagnostics and Prognostics: Proactive Maintenance and Failure Prevention

2015-04-16
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Diagnostics and Prognostics: Proactive Maintenance and Failure Prevention” (21:04), Delphi engineers explain how they leverage the growing number of sensors and computing power in vehicles to diagnose and proactively solve emerging mechanical or electronic problems, before a breakdown occurs. This video also looks at the next generation of automotive telematics, with HEM Data demonstrating how in-vehicle data acquisition is used to monitor the inner workings of vehicles.
Video

Career Wise for Engineering Professionals: Transforming Your Talents into the New World of Work

2013-08-19
There are many macro drivers that are creating opportunities for transportation electrification. They include the environment, dependence on foreign oil, national security, battery technology and government incentives to name a few. In light of this growing momentum consumers will have choices to where they can charge ? at home, workplace or publicly. Electrical vehicle supply equipment will drive value throughout the supply chain ? installer, building owner, automaker, suppliers, utilities and consumers. Market acceptance will occur when consumer?s needs and wants are met. To meet these needs access to products through multiple channels will be required. Presenter Manoj Karwa, Leviton Manufacturing Co. Inc.
Video

Development, Verification, and Validation of Penn State Extended Range Electric Vehicle

2012-06-05
The Pennsylvania State University is one of 16 North American universities that participated in the EcoCAR advanced vehicle technology competition (http://www.ecocarchallenge.org/). A series-hybrid-electric vehicle based on a General Motors crossover SUV platform has been designed, built and tested for this purpose. The powertrain features a 1.3 L turbodiesel engine running on a B20 fuel system, a 75kW generator directly coupled to the engine and advanced lithium-ion batteries. In this paper, the vehicle architecture and control strategy are detailed and performance predictions (e.g., acceleration, fuel consumption and emissions) are presented. This includes discussion of the development process that led to the selected designs. The predicted performance is compared with data obtained on a chassis dynamometer and during on-road measurements over specified drive cycles. Presenter Shawn Getty
Video

Development of a Hybrid Control Strategy for an Advanced Parallel HEV Powertrain with Two Electrical Axles

2012-05-29
This paper proposes a current limits distribution control strategy for a parallel hybrid electric vehicle (parallel HEV) which includes an advanced powertrain concept with two electrical driving axles. One of the difficulties of an HEV powertrain with two electrical driving axles is the ability to distribute the electrical current of one high voltage battery appropriately to the two independent electrical motors. Depending on the vehicle driving condition (i.e., car maneuver) or the maximization of the entire efficiency chain of the system, a suitable control strategy is necessary. We propose an input-output feedback linearization strategy to cope with the nonlinear system subject to input constraints. This approach needs an external, state dependent saturation element, which translates the state dependent control input saturation to the new feedback linearizing input and therefore preserves the properties of the differential geometric framework.
Video

Modeling and Optimization of Plug-In Hybrid Electric Vehicle Fuel Economy

2012-05-23
One promising solution for increasing vehicle fuel economy, while still maintaining long-range driving capability, is the plug-in hybrid electric vehicle (PHEV). A PHEV is a hybrid electric vehicle (HEV) whose rechargeable energy source can be recharged from an external power source, making it a combination of an electric vehicle and a traditional hybrid vehicle. A PHEV is capable of operating as an electric vehicle until the battery is almost depleted, at which point the on-board internal combustion engine turns on, and generates power to meet the vehicle demands. When the vehicle is not in use, the battery can be recharged from an external energy source, once again allowing electric driving. A series of models is presented which simulate various powertrain architectures of PHEVs. To objectively evaluate the effect of powertrain architecture on fuel economy, the models were run according to the latest test procedures and all fuel economy values were utility factor weighted.
Video

Safety Element out of Context - A Practical Approach

2012-05-22
ISO 26262 is the actual standard for Functional Safety of automotive E/E (Electric/Electronic) systems. One of the challenges in the application of the standard is the distribution of safety related activities among the participants in the supply chain. In this paper, the concept of a Safety Element out of Context (SEooC) development will be analyzed showing its current problematic aspects and difficulties in implementing such an approach in a concrete typical automotive development flow with different participants (e.g. from OEM, tier 1 to semiconductor supplier) in the supply chain. The discussed aspects focus on the functional safety requirements of generic hardware and software development across the supply chain where the final integration of the developed element is not known at design time and therefore an assumption based mechanism shall be used.
Video

Enabling Exponential Growth of Automotive Network Devices while Reducing the Wired Communication Infrastructure with Security, Reliability, and Safety

2012-05-22
The CAN protocol has served the automotive and related industries well for over twenty-five (25) years now; with the original CAN protocol officially released in 1986 followed by the release of CAN 2.0 in 1991. Since then many variants and improvements in CAN combined with the proliferation of automotive onboard microprocessor based sensors and controllers have resulted in CAN establishing itself as the dominant network architecture for automotive onboard communication in layers one (1) and two (2). Going forward however, the almost exponential growth of automotive onboard computing and the associated devices necessary for supporting said growth will unfortunately necessitate an equivalent growth in the already crowded wired physical infrastructure unless a suitable wireless alternative can be provided. While a wireless implementation of CAN has been produced, it has never obtained real traction within the automotive world.
Video

Copper-Rotor Induction- Motors: One Alternative to Rare Earths in Traction Motors

2012-05-16
The copper-rotor induction-motor made its debut in automotive electric traction in 1990 in GM's Impact EV. Since then, this motor architecture has covered millions of miles on other vehicle platforms which will soon include Toyota's RAV4-EV. With the industry's attention focused on cost-effective alternatives to permanent-magnet traction motors, the induction motor has returned to the spotlight. This talk will overview where the copper-rotor induction-motor is today, how the technology has evolved since the days of the GM Impact, the state-of-play in its mass-manufacturing processes and today's major supply-chain players. Presenter Malcolm Burwell, International Copper Association Inc.
Video

Modernizing the Opposed-Piston Engine for Efficient, Clean Transportation

2012-05-10
Historically, the opposed-piston, two-stroke (OP2S) diesel engine set combined records for fuel efficiency and power density that have yet to be met by any other engine type. However, with modern emissions standards, wide-spread development of this engine for on-highway use stopped. At Achates Power, state-of-the-art analytical tools and engineering methods have produced an OP2S engine that, when compared to a leading medium-duty engine, has demonstrated a 21% fuel efficiency gain and engine-out emissions levels meeting U.S. EPA10 with conventional after-treatment. Among the presentation topics covered are thermodynamic efficiency, demonstrated engine results, cost and weight advantages, and overcoming two-stroke engine challenges. Presenter David Johnson, Achates Power Inc.
Video

Vehicle Duty Cycles and Their Role in the Design and Evaluation of Advanced Vehicle Technologies

2012-04-10
Understanding in-use fleet operating behavior is of paramount importance when evaluating the potential of advanced/alternative vehicle technologies. Accurately characterizing real world vehicle operation assists in properly allocating advanced technologies, playing a role in determining initial payback period and return on investment. In addition, this information contributes to the design and deployment of future technologies as the result of increased awareness regarding tractive power requirements associated with typical operating behavior. In this presentation, the concept of vehicle duty cycles and their relation to advanced technologies will be presented and explored. Additionally, current research attempts to characterize school bus operation will be examined, and existing computational analysis and evaluation tools associated with these efforts discussed. Presenter Adam Duran, National Renewable Energy Laboratory
Video

Incorporating AFP Material Delivery Technology on Commercially Available Robot Machine Platforms

2012-03-23
: Fiber Placement equipment has historically been very large and very expensive. Therefore, the AFP process has been mostly exclusive to the larger aerospace companies of the world. In order to achieve more widespread use of the AFP process, a wider variety of machine configurations must be offered and cost of the equipment must be decreased. Commercially available, articulated robotic arms have been identified as an attractive, low cost option for AFP machine platforms. However, incorporating AFP material delivery technology with robotic arms has many challenges. These challenges relate to both hardware and software issues. This presentation will address the technical challenges of using robots as a machine platform for the AFP process and review the current status of this composites lamination equipment technology. Presenter Frederic Challois, Coriolis Composites
Video

Integrating Formal Model Checking with the RTEdge™ AADL Microkernel

2012-03-21
Edgewater Computer Systems Inc. product RTEdge Platform 1.2 is a software toolset supporting proof based engineering, implementation and deployment of software components, built using the RTEdge AADL Microkernel modeling subset. This is a small subset of the AADL component model and execution semantics, covering threads and thread-groups communicating solely through asynchronous event ports and through explicitly shared data ports. Threads behavior is expressed as state machines and dispatch run time semantics is encoded in a Run-time Executive, enforcing pre-emptive priority dispatch based on statically assigned event priorities, with ceiling priority protocol access to shared data. This simple AADL microkernel semantic core can support all dispatch policies, communication and synchronization mechanisms of a fully fledged AADL run time environment, permitting the systematic use of the RTEdge static analysis tools for AADL compliant software components.
Video

Applying Critical-System Java to the Challenges of SMP Platforms

2012-03-21
In recent years, all major microprocessor manufacturers are transitioning towards the deploymenet of multiple processing cores on every chip. These multi-core architectures represent the industry consensus regarding the most effective utilization of available silicon resources to satisfy growing demands for processing and memory capacities. Porting off-the-shelf software capabilities to multi-core architectures often requires significant changes to data structures and algorithms. When developing new software capabilities specifically for deployment on SMP architectures, software engineers are required to address specific multi-core programming issues, and in the ideal, must do so in ways that are generic to many different multi-core target platforms. This talk provides an overview of the special considerations that must be addressed by software engineers targeting multi-core platforms and describes how the Java language facilitates solutions to these special challenges.
Video

Transmissions in Aircraft on Unique Path wires: An Aeronautic European Research Project

2012-03-21
TAUPE is a collaborative research project co-funded by the European Commission in the framework of the Seventh Framework Programme (FP7). It addresses the aeronautic sector and is composed of 17 partners from 6 European countries. The project lasts 3,5 years (September 2008 ? February 2012), is led by Safran Engineering Services (Labinal, SAFRAN Group) and has a budget of 5.5M?. The project aims to simplify the electrical architecture of aircraft and to reduce the length and mass of cabling by introducing PLC (PowerLine Communication) or PoD (Power over Data) technologies inside the aircraft. Both technologies essentially aim to supply power and data over the same cable.
Video

Mastering the ARINC 661 Standard

2012-03-19
By introducing the concept of a separation between graphics and logic, interpreted run time architecture, and defined communication protocol, the ARINC 661 standard has addressed many of the concerns that aircraft manufacturers face when creating cockpit avionics displays. However, before kicking off a project based on the standard, it is important to understand all aspects of the standard, as well as the benefits and occasional drawbacks of developing with ARINC 661 in mind. This white paper will first provide an overview of ARINC 661 to clarify its concepts and how these relate to the development process. The paper will also describe the benefits of using a distributed development approach, and will outline practical, real world considerations for implementing an ARINC 661-based solution. Finally, readers will learn how commercial tools can be used to simplify the creation of displays following the standard to speed development and reduce costs.
Video

Sensor Video Integration and Processing in the Modular Avionics Architecture

2012-03-19
Use of airborne high resolution digital sensor imagery is ever increasing. Color HDTV, infrared cameras and radar are examples of such sensors. And they are becoming increasingly used for mission purposes by the military, police, customs and coast guard onboard helicopters and fixed wing aircraft. These users have requirements for onboard presentation, analysis and storage. Use of weather radars and other similar types of sensors are flight oriented applications in major types of aircraft. Another application is the integration of cockpit and cabin surveillance systems onboard commercial airlines. Cabin surveillance systems, growing from cockpit door cameras to complete cabin surveillance, will use several cameras. The purpose is to acquire and store imagery from un-normal events including unruly passengers and eventual terrorists. The primary intentions are security awareness in the cockpit as well as collecting evidence for a potential prosecution.
X