Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Analysis and Automated Detection of Ice Crystal Icing Conditions Using Geostationary Satellite Datasets and In Situ Ice Water Content Measurements

2019-06-10
2019-01-1953
Recent studies have found that high mass concentrations of ice particles in regions of deep convective storms can adversely impact aircraft engine and air probe (e.g. pitot tube and air temperature) performance. Radar reflectivity in these regions suggests that they are safe for aircraft penetration, yet high ice water content (HIWC) is still encountered. The aviation weather community seeks additional remote sensing methods for delineating where ice particle (or crystal) icing conditions are likely to occur, including products derived from geostationary (GEO) satellite imagery that is now available in near-real time at increasingly high spatio-temporal detail from the global GEO satellite constellation.
Technical Paper

Thermal Model Correlation for Mars Reconnaissance Orbiter

2007-07-09
2007-01-3243
The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and began aerobraking at Mars in March 2006. In order to save propellant, MRO used aerobraking to modify the initial orbit at Mars. The spacecraft passed through the atmosphere briefly on each orbit; during each pass the spacecraft was slowed by atmospheric drag, thus lowering the orbit apoapsis. The largest area on the spacecraft, most affected by aeroheating, was the solar arrays. A thermal analysis of the solar arrays was conducted at NASA Langley Research Center to simulate their performance throughout the entire roughly 6-month period of aerobraking. A companion paper describes the development of this thermal model. This model has been correlated against many sets of flight data. Several maneuvers were performed during the cruise to Mars, such as thruster calibrations, which involve large abrupt changes in the spacecraft orientation relative to the sun.
Technical Paper

NASA Personal Air Transportation Technologies

2006-08-30
2006-01-2413
The ability to personalize air travel through the use of an on-demand, highly distributed air transportation system will provide the degree of freedom and control that Americans enjoy in other aspects of their life. This new capability, of traveling when, where, and how we want with greatly enhanced mobility, accessibility, and speed requires vehicle and airspace technologies to provide the equivalent of an internet PC ubiquity, to an air transportation system that now exists as a centralized hub and spoke mainframe NASA airspace related research in this new category of aviation has been conducted through the Small Aircraft Transportation (SATS) project, while the vehicle technology efforts have been conducted in the Personal Air Vehicle sector of the Vehicle Systems Program.
Technical Paper

Test Results of Improved Spacesuit Shielding Components

2003-07-07
2003-01-2330
Prior studies have been performed where basic fabric lay-ups of the current Shuttle spacesuit were tested for radiation shielding capabilities. It was found that the fabric portions of the suit give far less protection from radiation than previously estimated. This is due to the porosity and non-uniformity of the fabrics and LCVG components. These findings were incorporated into the spacesuit model developed at NASA Langley Research Center to estimate exposures for mission planning and evaluation of safety during radiation field disturbance. Overall material transmission properties were also less than optimal. In order to evaluate the radiation protection characteristics of some proposed new spacesuit materials, fifteen test target combinations of current baseline and new proposed spacesuit materials were exposed to a low-energy proton beam at Lawrence Berkeley National Laboratory. Each target combination contained all of the necessary spacesuit layers, i.e.
Technical Paper

Hybrid Laminar Flow Control Applied to Advanced Turbofan Engine Nacelles

1992-04-01
920962
In recent years, the National Aeronautics and Space Administration (NASA) in cooperation with U.S. industry has performed flight and wind-tunnel investigations aimed at demonstrating the feasibility of obtaining significant amounts of laminar boundary-layer flow at moderate Reynolds numbers on the swept-back wings of commercial transport aircraft. Significant local drag reductions have been recorded with the use of a hybrid laminar flow control (HLFC) concept. In this paper, we address the potential application of HLFC to the external surface of an advanced, high bypass ratio turbofan engine nacelle with a wetted area which approaches 15 percent of the wing total wetted area of future commercial transports. A pressure distribution compatible with HLFC is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer.
Technical Paper

Application of Laminar Flow Control to High-Bypass-Ratio Turbofan Engine Nacelles

1991-09-01
912114
Recently, the concept of the application of hybrid laminar flow to modern commercial transport aircraft was successfully flight tested on a Boeing 757 aircraft. In this limited demonstration, in which only part of the upper surface of the swept wing was designed for the attainment of laminar flow, significant local drag reduction was measured. This paper addresses the potential application of this technology to laminarize the external surface of large, modern turbofan engine nacelles which may comprise as much as 5-10 percent of the total wetted area of future commercial transports. A hybrid-laminar-fiow-control (HLFC) pressure distribution is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer. Performance studies are presented to determine potential benefits in terms of reduced fuel consumption.
Technical Paper

Aerodynamic Design Data For a Cruise-Matched High Performance Single Engine Airplane

1981-04-01
810625
Design data are presented for a class of high-performance single-engine business airplanes. The design objectives include a cruise speed of 300 knots, a cruise altitude of 10,700 m (35,000 ft), a cruise payload of six passengers (including crew and baggage), and a no-reserves cruise range of 1300 n.mi. Two unconventional aerodynamic technologies were evaluated: the individual and combined effects of cruise-matched wing loading and of a natural laminar flow airfoil were analyzed. The tradeoff data presented illustrate the ranges of wing geometries, propulsion requirements, airplane weights, and aerodynamic characteristics which are necessary to meet the design objectives. very large design and performance improvements resulted from use of the aerodynamic technologies evaluated. Is is shown that the potential exists for achieving more than 200-percent greater fuel efficiency than is achieved by current airplanes capable of similar cruise speeds, payloads, and ranges.
Technical Paper

Airframe Technology for Energy Efficient Transport Aircraft

1976-02-01
760929
Fuel costs comprise a major portion of air transport operating costs. Thus, energy efficiency is an essential design goal for future transport aircraft. Advanced composite structures, advanced wing geometries, and active control systems all promise substantial benefits in fuel efficiency and direct operating cost for derivative and new aircraft introduced by 1985. Technology for maintenance of a laminar boundary layer in cruise offers great benefits in fuel efficiency and direct operating cost and may be ready for application to transports introduced in the 1990's. NASA and the air transport industry are cooperating in a comprehensive Aircraft Energy Efficiency Program to expedite the introduction of these advanced technologies into production aircraft.
X