Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

2019-06-10
2019-01-2027
NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding of high ice water content (HIWC) and develop onboard weather radar processing techniques to detect regions of HIWC ahead of an aircraft to enable tactical avoidance of the potentially hazardous conditions. Both HIWC RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory equipped with a Honeywell RDR-4000 weather radar and in-situ microphysical instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results. The first campaign was conducted in August 2015 with a base of operations in Ft. Lauderdale, Florida.
Technical Paper

Analysis and Automated Detection of Ice Crystal Icing Conditions Using Geostationary Satellite Datasets and In Situ Ice Water Content Measurements

2019-06-10
2019-01-1953
Recent studies have found that high mass concentrations of ice particles in regions of deep convective storms can adversely impact aircraft engine and air probe (e.g. pitot tube and air temperature) performance. Radar reflectivity in these regions suggests that they are safe for aircraft penetration, yet high ice water content (HIWC) is still encountered. The aviation weather community seeks additional remote sensing methods for delineating where ice particle (or crystal) icing conditions are likely to occur, including products derived from geostationary (GEO) satellite imagery that is now available in near-real time at increasingly high spatio-temporal detail from the global GEO satellite constellation.
Technical Paper

Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model

2011-06-13
2011-38-0065
An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5% scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from α = -5 to 85 deg. and β = -45 to 45 deg. at a Reynolds number of 0.24x10⁶ and Mach number of 0.06. The 3.5% scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5% scale GTM.
Technical Paper

Nowcasting Aircraft Icing Conditions in the Presence of Multilayered Clouds Using Meteorological Satellite Data

2011-06-13
2011-38-0041
Cloud properties retrieved from satellite data are used to diagnose aircraft icing threat in single layer and multilayered ice-over-liquid clouds. The algorithms are being applied in real time to the Geostationary Operational Environmental Satellite (GOES) data over the CONUS with multilayer data available over the eastern CONUS. METEOSAT data are also used to retrieve icing conditions over western Europe. The icing algorithm's methodology and validation are discussed along with future enhancements and plans. The icing risk product is available in image and digital formats on NASA Langley ‘s Cloud and Radiation Products web site, http://www-angler.larc.nasa.gov.
Technical Paper

NASA Personal Air Transportation Technologies

2006-08-30
2006-01-2413
The ability to personalize air travel through the use of an on-demand, highly distributed air transportation system will provide the degree of freedom and control that Americans enjoy in other aspects of their life. This new capability, of traveling when, where, and how we want with greatly enhanced mobility, accessibility, and speed requires vehicle and airspace technologies to provide the equivalent of an internet PC ubiquity, to an air transportation system that now exists as a centralized hub and spoke mainframe NASA airspace related research in this new category of aviation has been conducted through the Small Aircraft Transportation (SATS) project, while the vehicle technology efforts have been conducted in the Personal Air Vehicle sector of the Vehicle Systems Program.
Technical Paper

Risk Assessment and Shielding Design for Long-Term Exposure to Ionizing Space Radiation

2006-07-17
2006-01-2108
NASA is now focused on the agency's vision for space exploration encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. As a result, there is a focus on long duration space missions. NASA is committed to the safety of the missions and the crew, and there is an overwhelming emphasis on the reliability issues for space missions and the habitat. The cost effective design of the spacecraft demands a very stringent requirement on the optimization process. Exposure from the hazards of severe space radiation in deep space and/or long duration missions is ‘the show stopper.’ Thus, protection from the hazards of severe space radiation is of paramount importance to the new vision. It is envisioned to have long duration human presence on the Moon for deep space exploration. As NASA is looking forward to exploration in deep space, there is a need to go beyond current technology to the technology of the future.
Technical Paper

Nuclear Radiation Fields on the Mars Surface: Risk Analysis for Long-term Living Environment

2005-07-11
2005-01-2833
Mars, our nearest planet outward from the sun, has been targeted for several decades as a prospective site for expanded human habitation. Background space radiation exposures on Mars are expected to be orders of magnitude higher than on Earth. Recent risk analysis procedures based on detailed dosimetric techniques applicable to sensitive human organs have been developed along with experimental data regarding cell mutation rates resulting from exposures to a broad range of particle types and energy spectra. In this context, simulated exposure and subsequent risk for humans in residence on Mars are examined. A conceptual habitat structure, CAD-modeled with duly considered inherent shielding properties, has been implemented. Body self-shielding is evaluated using NASA standard computerized male and female models.
Technical Paper

Comparison of Super-cooled Liquid Water Cloud Properties Derived from Satellite and Aircraft Measurements

2003-06-16
2003-01-2156
A theoretically based algorithm to derive super-cooled liquid water (SLW) cloud macrophysical and microphysical properties is applied to operational satellite data and compared to pilot reports (PIREPS – from commercial and private aircraft) of icing and to in-situ measurements collected from a NASA icing research aircraft. The method has been shown to correctly identify the existence of SLW provided there are no higher-level ice crystal clouds (i.e. cirrus) above the SLW deck. The satellite-derived SLW cloud properties, particularly the cloud temperature, optical thickness or water path and water droplet size, show good qualitative correspondence with aircraft observations and icing intensity reports. Preliminary efforts to quantify the relationship between the satellite retrievals, PIREPS and aircraft measurements are reported here. The goal is to determine the extent to which the satellite-derived cloud parameters can be used to improve icing diagnoses and forecasts.
Technical Paper

Near-Real-Time Satellite Cloud Products for Icing Detection and Aviation Weather over the USA

2003-06-16
2003-01-2097
A set of physically based retrieval algorithms has been developed to derive from multispectral satellite imagery a variety of cloud properties that can be used to diagnose icing conditions when upper-level clouds are absent. The algorithms are being applied in near-real time to the Geostationary Operational Environmental Satellite (GOES) data over Florida, the Southern Great Plains, and the midwestern USA. The products are available in image and digital formats on the world-wide web. The analysis system is being upgraded to analyze GOES data over the CONUS. Validation, 24-hour processing, and operational issues are discussed.
Technical Paper

Neutron Environment Calculations for Low Earth Orbit

2001-07-09
2001-01-2327
The long term exposure of astronauts on the developing International Space Station (ISS) requires an accurate knowledge of the internal exposure environment for human risk assessment and other onboard processes. The natural environment is moderated by the solar wind, which varies over the solar cycle. The HZETRN high charge and energy transport code developed at NASA Langley Research Center can be used to evaluate the neutron environment on ISS. A time dependent model for the ambient environment in low earth orbit is used. This model includes GCR radiation moderated by the Earth’s magnetic field, trapped protons, and a recently completed model of the albedo neutron environment formed through the interaction of galactic cosmic rays with the Earth’s atmosphere. Using this code, the neutron environments for space shuttle missions were calculated and comparisons were made to measurements by the Johnson Space Center with onboard detectors.
Technical Paper

Astronaut Exposures to Ionizing Radiation in a Lightly-Shielded Spacesuit

1999-07-12
1999-01-2173
The normal working and living areas of the astronauts are designed to provide an acceptable level of protection against the hazards of ionizing radiation of the space environment. Still there are occasions when they must don a spacesuit designed mainly for environmental control and mobility and leave the confines of their better-protected domain. This is especially true for deep space exploration. The impact of spacesuit construction on the exposure of critical astronaut organs will be examined in the ionizing radiation environments of free space, the lunar surface and the Martian surface. The computerized anatomical male model is used to evaluate astronaut self-shielding factors and to determine space radiation exposures to critical radiosensitive human organs.
Technical Paper

Overview of Structural Behavior and Occupant Responses from a Crash Test of a Composite Airplane

1995-05-01
951168
As part of NASA's composite structures crash dynamics research, a general aviation aircraft with composite wing, fuselage and empennage (but with metal subfloor structure) was crash tested at the NASA Langley Research Center Impact Dynamics Research Facility. The test was conducted to determine composite aircraft structural behavior for crash loading conditions and to provide a baseline for a similar aircraft test with a modified subfloor. Structural integrity and cabin volume were maintained. Lumbar loads for dummy occupants in energy absorbing seats were substantially lower than those in standard aircraft seats; however, loads in the standard seats were much higher than those recorded under similar conditions for an all-metallic aircraft.
Technical Paper

Aerodynamic Design Data For a Cruise-Matched High Performance Single Engine Airplane

1981-04-01
810625
Design data are presented for a class of high-performance single-engine business airplanes. The design objectives include a cruise speed of 300 knots, a cruise altitude of 10,700 m (35,000 ft), a cruise payload of six passengers (including crew and baggage), and a no-reserves cruise range of 1300 n.mi. Two unconventional aerodynamic technologies were evaluated: the individual and combined effects of cruise-matched wing loading and of a natural laminar flow airfoil were analyzed. The tradeoff data presented illustrate the ranges of wing geometries, propulsion requirements, airplane weights, and aerodynamic characteristics which are necessary to meet the design objectives. very large design and performance improvements resulted from use of the aerodynamic technologies evaluated. Is is shown that the potential exists for achieving more than 200-percent greater fuel efficiency than is achieved by current airplanes capable of similar cruise speeds, payloads, and ranges.
Technical Paper

Airframe Technology for Energy Efficient Transport Aircraft

1976-02-01
760929
Fuel costs comprise a major portion of air transport operating costs. Thus, energy efficiency is an essential design goal for future transport aircraft. Advanced composite structures, advanced wing geometries, and active control systems all promise substantial benefits in fuel efficiency and direct operating cost for derivative and new aircraft introduced by 1985. Technology for maintenance of a laminar boundary layer in cruise offers great benefits in fuel efficiency and direct operating cost and may be ready for application to transports introduced in the 1990's. NASA and the air transport industry are cooperating in a comprehensive Aircraft Energy Efficiency Program to expedite the introduction of these advanced technologies into production aircraft.
Technical Paper

Light Aircraft Crash Safety Program

1974-02-01
740353
The Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA) have joined forces in a General Aviation Crashworthiness Program. This paper describes the research and development tasks of the program which are the responsibility of NASA. NASA is embarked upon research and development tasks aimed at providing the general aviation industry with a reliable crashworthy airframe design technology. The goals of the NASA program are: reliable analytical techniques for predicting the nonlinear behavior of structures; significant design improvements of airframes; and simulated full-scale crash test data. The analytical tools will include both simplified procedures for estimating energy absorption characteristics and more complex computer programs for analysis of general airframe structures under crash loading conditions.
Technical Paper

Development of Airframe Design Technology for Crashworthiness

1973-02-01
730319
This paper describes the NASA portion of a joint FAA-NASA General Aviation Crashworthiness Program leading to the development of improved crashworthiness design technology. The objectives of the program are to develop analytical technology for predicting crashworthiness of structures, provide design improvements, and perform full-scale crash tests. The analytical techniques which are being developed both in-house and under contract are described and typical results from these analytical programs are shown. In addition, the full-scale testing facility and test program are discussed.
X