Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Results of VPCAR Pilot Scale and System Level Tests for the Selective Oxidation of Ammonia to Nitrogen and Water

2005-07-11
2005-01-3034
The cost of delivering the payloads to space increases dramatically with distance and therefore missions to deep space place a strong emphasis on reducing launch weight and eliminating resupply requirements. The Vapor Phase Catalytic Ammonia Removal (VPCAR) system, which is being developed for water purification, is an example of this focus because it has no resupply requirements. A key step in the VPCAR system is the catalytic oxidation of ammonia and volatile hydrocarbons to benign compounds such as carbon dioxide, water, and nitrogen. Currently, platinum-based commercial oxidation catalysts are being used for these reactions. However, conventional platinum catalysts can convert ammonia (NH3) to NO and NO2 (collectively referred to as NOX), which are more hazardous than ammonia.
Technical Paper

Development of a Pilot Scale Reactor for the Selective Oxidation of Ammonia to Nitrogen and Water

2004-07-19
2004-01-2406
As manned spacecraft travel farther from Earth, the cost of delivering the payloads to space increases dramatically. For example the cost of delivering a payload to low Earth orbit currently is about $10,000/lb. On the other hand the cost of delivering a payload to Mars may be up to 40 times greater and therefore missions to deep space place a strong emphasis on reducing launch weight and eliminating resupply requirements. The Vapor Phase Catalytic Ammonia Removal (VPCAR) system, which is being developed to purify water, is an example of this focus. In addition to having a lower launch weight than the Water Recycle System (WRS) currently used on the International Space Station, it also has no resupply requirements. A key step in the VPCAR system is the catalytic oxidation of ammonia and volatile hydrocarbons to benign compounds such as carbon dioxide, water, and nitrogen. Currently platinum-based commercial oxidation catalysts are being used for these reactions.
Technical Paper

Testing and Development of New Catalysts for Vapor Phase Ammonia Oxidation

2003-07-07
2003-01-2502
Catalytic oxidation is an effective means of controlling the build up of ammonia and other trace gas contaminants within closed spaces. However, it sometimes leads to the formation of noxious gases that need to be removed in post-treatment systems. In addition, ammonia removal is an issue when regeneration of water from wastewater is considered since ammonia is a byproduct of urea decomposition. For example, the VPCAR (Vapor Phase Catalytic Ammonia Reduction) advanced water processor system includes an oxidation reactor for the destruction of ammonia and of other volatile organics that are not separated out in the evaporator due to their volatility. The oxidation of ammonia may produce nitrogen, nitrogen oxides (NO and NO2), nitrous oxide (N2O) and water vapor. The Spacecraft Maximum Allowable Concentration (SMAC) for NO and NO2 are respectively 4.5 and 0.5 ppm whereas the Threshold Limit Value (TLV) for N2O is 25 ppm.
X