Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Pre-Turbo Aftertreatment Position for Large Bore Diesel Engines - Compact & Cost-Effective Aftertreatment with a Fuel Consumption Advantage

2011-04-12
2011-01-0299
Tier 4 emissions legislation is emerging as a clear pre-cursor for widespread adoption of exhaust aftertreatment in off-highway applications. Large bore engine manufacturers are faced with the significant challenge of packaging a multitude of catalyst technologies in essentially the same design envelope as their pre-Tier 4 manifestations, while contending with the fuel consumption consequences of the increased back pressure, as well as the incremental cost and weight associated with the aftertreatment equipment. This paper discusses the use of robust metallic catalysts upstream of the exhaust gas turbine, as an effective means to reduce catalyst volume and hence the weight and cost of the entire aftertreatment package. The primarily steady-state operation of many large bore engine applications reduces the complication of overcoming pre-turbine catalyst thermal inertia under transient operation.
Technical Paper

Effect of Diesel Fuel Chemistry on Regulated Emissions at High Altitude

1996-10-01
961947
The effect of diesel cetane number, total aromatic content T90, and fuel nitrogen content on regulated emissions (HC, CO, NOx, and PM) from a 1991 DDC Series 60 engine were measured Emissions tests were conducted using the EPA heavy-duty transient test (CFR 40 Part 86 Subpart N) at a laboratory located 5,280 feet (1609 m) above sea level. The objective of this work was to determine if the effect of fuel chemistry at high altitude is similar to what is observed at sea level and to examine the effect of specific fuel chemistry variables on emissions. An initial tea series was conducted to examine the effect of cetane number and aromatics. Transient emissions for this test series indicated much higher (50 to 75%) particulate emissions at high altitude than observed on the same model engine and similar fuels at sea level.
Technical Paper

The Effect of Diesel Sulfur Content and Oxidation Catalysts on Transient Emissions at High Altitude from a 1995 Detroit Diesel Series 50 Urban Bus Engine

1996-10-01
961974
Regulated emissions (THC, CO, NOx, and PM) and particulate SOF and sulfate fractions were determined for a 1995 Detroit Diesel Series 50 urban bus engine at varying fuel sulfur levels, with and without catalytic converters. When tested on EPA certification fuel without an oxidation catalyst this engine does not appear to meet the 1994 emissions standards for heavy duty trucks, when operating at high altitude. An ultra-low (5 ppm) sulfur diesel base stock with 23% aromatics and 42.4 cetane number was used to examine the effect of fuel sulfur. Sulfur was adjusted above the 5 ppm level to 50, 100, 200, 315 and 500 ppm using tert-butyl disulfide. Current EPA regulations limit the sulfur content to 500 ppm for on highway fuel. A low Pt diesel oxidation catalyst (DOC) was tested with all fuels and a high Pt diesel oxidation catalyst was tested with the 5 and 50 ppm sulfur fuels.
X