Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Plant Nutrient Solution Production Subsystem and Mineral Recycling in CEEF

2000-07-10
2000-01-2335
In the Closed Ecology Experiment Facilities (CEEF), waste materials such as plant inedible parts, feces and urine of animal and human, and garbage are to be decomposed to inorganic materials by a physical and chemical (P/C) process; Wet Oxidation (W/O). It is known that significant part of nitrogen (N) in the waste materials is reduced to gaseous nitrogen (N2) through W/O process. There is also some deposition of minerals such as iron (Fe) and phosphorous (P) through W/O process. Nitrogen Fixation Subsystem (NFS) produces ammonia (NH3) which is one of end products of NFS, from N2 separated from module air and hydrogen (H2) derived from electrolyses of water, and also produces nitrate (HNO3) from a part of the NH3 and oxygen (O2) derived from electrolyses of water. As another end product of NFS, ammonium nitrate (NH4NO3) is produced from the HNO3 and a part of the NH3.
Technical Paper

Performance Test Data of Wet Oxidation Plant for CEEF - CEEF: Controlled Ecology Experiment Facilities

1996-07-01
961558
This waste management process must be capable of treating the various wastes generated within Controlled Ecology Experiment Facilities (CEEF) and operate effectively in and environment in which carbon, oxygen, nitrogen, salts, and other important minerals, exit. The catalytic Wet Oxidation Process (W/O Process) is regarded to be the most feasible candidate process for such waste management. This paper clarifies the performance data and the design data of the actual device. By applying these comparison data, for example, water balance, insoluble part balance, organic part balance, and inorganic balance for CEEF, we were also able to confirm the usefulness and applicability of the actual Wet Oxidation Device.
Technical Paper

Study for Minimizing of Toxic Gaseous Waste in Wet Oxidation Process

1995-07-01
951579
Compared with other applicable processes such as incineration, the catalytic wet oxidation process is considered to be the most practically applicable waste treatment process for the CELSS. In this report, the quantity of carbon monoxide generated in the wet oxidation process is identified and a measure for carbon monoxide minimization is discussed. As a result of a bench test, it became apparent that a non-negligible quantity of carbon monoxide could be generated in the catalytic wet oxidation process. However, it can be expected that this CO content will be reduced to a safe level by applying the wet oxidation process catalyst reactor to CO oxidation.
X