Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Journal Article

TOC

2023-12-18
Abstract TOC
Journal Article

Prediction of Surface Finish on Hardened Bearing Steel Machined by Ceramic Cutting Tool

2023-05-17
Abstract Prediction of the surface finish of hardened bearing steels was estimated in machining with ceramic uncoated cutting tools under various process parameters using two statistical approaches. A second-order (quadratic) regression model (MQR, multiple quantile regression) for the surface finish was developed and then compared with the artificial neural network (ANN) method based on the coefficient determination (R 2), root mean square error (RMSE), and percentage error (PE). The experimental results exhibited that cutting speed was the dominant parameter, but feed rate and depth of cut were insignificant in terms of the Pareto chart and analysis of variance (ANOVA). The optimum surface finish in machining bearing steel was achieved at 100 m/min speed, 0.1 mm/revolution (rev) feed rate, and 0.6 mm depth of cut.
Journal Article

Effect of NiAl Bond Layer on the Wear Resistance of an Austenitic Stainless Steel Coating Obtained by Arc Spray Process

2023-05-11
Abstract The present investigation has been conducted to study the tribological and adhesion properties of X10CrNi18-8 austenitic stainless steel (ASTM 301) coatings deposited on aluminum alloys such as AU4G by using the arc-spraying process. These coatings were made with and without a bond-coat layer, which is constituted by NiAl. The structure of the phases that are present in coatings was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The measurements of microhardness and tribological behavior at different loads were also performed on the surface of the coatings. Adherence test was also carried out using four-point bending tests. The SEM showed that the dense microstructures of coatings have a homogeneous lamellar morphology with the presence of porosities and unmelted particles. The main phase of coating corresponds to a solid solution as a face-centered cubic (fcc).
Journal Article

TOC

2022-09-07
Abstract TOC
Journal Article

Numerical Analysis of a Separable Metal Composite Pressure Vessel

2022-08-09
Abstract This article presents a numerical solution to the problem of delamination in a separable Metal Composite High-Pressure Vessel (MC HPV). This problem is associated with local buckling of the inner metal shell (liner) surrounded by an outer rigid composite shell. A geometrically and physically nonlinear MC HPV deformation model is constructed considering the three-dimensional stress-strain state, real-time mode, and technological deviations inherent in real vessel designs. The model combines the deformation of the vessel end domes and the cylindrical part. A unilateral constraint is believed to exist on the interface between the liner and the composite shell, allowing the liner to delaminate from the latter when bending. Calculations are performed using the finite element method in the LS-DYNA software package in a dynamic formulation. The vessel is divided into solid finite elements such as TSHELL and SOLID.
Journal Article

Performance Study of Novel Compressor Blades in a Two-Dimensional Cascade—Transonic Regime

2021-09-07
Abstract Passengers would always like to reach their destinations with minimum commute time. Generating a higher thrust is a necessity. This implies that the turbomachinery associated with the power plant has to rotate faster and with higher efficiencies. However, high rotational speeds, mainly in the transonic regime, often lead to boundary layer separation, shocks, compressor stall, and surge. The current investigation is an attempt to reduce the abovementioned phenomena. It involves the performance study of a smoothened controlled diffusion airfoil (CDA) blade that has been optimized by “Multi-Objective Genetic Algorithm” (MOGA) by altering maximum camber location and stagger angle. Inlet pressure is varied from 15 kPa to 30 kPa and the angle of attack ranging from 40.4° to 56.4°. C48-S16-BS1 is validated and considered as the baseline profile, and all other blades are collated to this.
Journal Article

Technological Stability of the Liner in a Separable Metal Composite Pressure Vessel

2020-04-21
Abstract The article considers one of the possible mechanisms of loading the solidity of a cylindrical metal composite high-pressure vessel (MC HPV). This mechanism manifests itself as delamination of a thin-walled metal shell (liner) from a more rigid composite shell causing local buckling. A similar effect can be detected in the manufacturing process of MC HPV, when the composite shell is formed by winding with tension a carbon fiber-reinforced plastic tape on the liner. Pressure transfer from the composite shell to the liner is carried out by the method of temperature analogy, that is, by cooling the composite shell, thermally insulated from the liner. To solve the problem of externally confined liner local buckling an approach is proposed, which is based on three points: the introduction of local technological deviations inherent in actual structures, the determination of the general stress-strain state, and a real-time deforming.
Journal Article

Mathematical Model of Heat-Controlled Accumulator (HCA) for Microgravity Conditions

2020-01-20
Abstract It is reasonable to use a two-phase heat transfer loop (TPL) in a thermal control system (TCS) of spacecraft with large heat dissipation. One of the key elements of TPL is a heat-controlled accumulator (HCA). The HCA represents a volume which is filled with vapor and liquid of a single working fluid without bellows. The pressure in a HCA is controlled by the heater. The heat and mass transfer processes in the HCA can proceed with a significant nonequilibrium. This has implications on the regulation of TPL. This article presents a mathematical model of nonequilibrium heat and mass transfer processes in an HCA for microgravity conditions. The model uses the equations of mass and energy conservation separately for the vapor and liquid phases. Interfacial heat and mass transfer is also taken into account. It proposes to use the convective component k for the level of nonequilibrium evaluation.
Journal Article

Effect of Shot Peening Conditions on the Fatigue Life of Additively Manufactured A357.0 Parts

2020-01-09
Abstract Fatigue performance can be a critical attribute for the production of structural parts or components via additive manufacturing (AM). In comparison to the static tensile behavior of AM components, there is a lack of knowledge regarding the fatigue performance. The growing market demand for AM implies the need for more accurate fatigue investigations to account for dynamically loaded applications. A357.0 parts are processed by laser-based powder bed fusion (L-PBF) in order to evaluate the effect of surface finishing on fatigue behavior. The specimens are surface finished by shot peening using ϕ = 0.2 and ϕ = 0.4 mm steel particles and ϕ = 0.21-0.3 mm zirconia-based ceramic particles.
Journal Article

Erosion Wear Response of Linz-Donawitz Slag Coatings: Parametric Appraisal and Prediction Using Imperialist Competitive Algorithm and Neural Computation

2019-03-14
Abstract Slag, generated from basic oxygen furnace (BOF) or Linz-Donawitz (LD) converter, is one of the recyclable wastes in an integrated steel plant. The present work aims at utilization of waste LD slag to develop surface coatings by plasma spraying technique. This study reveals that LD slag can be gainfully used as a cost-effective wear-resistant coating material. A prediction model based on an artificial neural network (ANN) is also proposed to predict the erosion performance of these coatings. The 2.27% error shows that ANN successfully predicts the erosion wear rate of the coatings both within and beyond the experimental domain. In addition to it, a novel optimization algorithm called imperialist competitive algorithm (ICA) is used to obtain minimum erosion wear rate of 12.12 mg/kg.
X