Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

AS13100 and RM13004 Design and Process Failure Mode and Effects Analysis and Control Plans

2024-07-03
This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. In the Aerospace Industry there is a focus on Defect Prevention to ensure that quality goals are met. Failure Mode and Effects Analysis (PFMEA) and Control Plan activities are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Design Failure Mode and Effects Analysis (DFMEA), Process Flow Diagrams, Process Failure Mode and Effects Analysis (PFMEA) and Control Plans as described in AS13100 and RM13004.
Technical Paper

Neural Network Modeling of Black Box Controls for Calibration of Internal Combustion Engines

2024-07-02
2024-01-2995
The calibration of Engine Control Units (ECUs) for road vehicles is challenged by stringent legal and environmental regulations, coupled with short development cycles. The growing number of vehicle variants, although sharing similar engines and control algorithms, requires different calibrations. Additionally, these engines feature an increasing number of adjustment variables, along with complex parallel and nested conditions within the software, demanding a significant amount of measurement data during development. The current state-of-the-art (White Box) model-based ECU calibration proves effective but involves considerable effort for model construction and validation. This is often hindered by limited function documentation, available measurements, and hardware representation capabilities. This article introduces a model-based calibration approach using Neural Networks (Black Box) for two distinct ECU functional structures with minimal software documentation.
Training / Education

AS13100 RM13010 Human Factors for Aviation

2024-06-19
The aerospace industry is focused on fostering a positive safety culture and competency in Human Factors considerations supports competencies crucial to an organization's quality management and safety. Many standards include requirements for embedding Human Factors within the aerospace manufacturing and supply chains. This course introduces the skills and knowledge supporting compliance and capability in human performance. This course provides an overview of Human Factors management in aviation and clarifies what individuals and companies can do to optimize the effects of Human Factors within their organization.
Technical Paper

Metrics based design of electromechanical coupled reduced order model of an electric powertrain for NVH assessment

2024-06-12
2024-01-2913
Electric vehicles offer cleaner transportation with lower emissions, thus their increased popularity. Although, electric powertrains contribute to quieter vehicles, the shift from internal combustion engines to electric powertrains presents new Noise, Vibration, and Harshness challenges. Unlike traditional engines, electric powertrains produce distinctive tonal noise, notably from motor whistles and gear whine. These tonal components have frequency content, sometimes above 10 kHz. Furthermore, the housing of the powertrain is the interface between the excitation from the driveline via the bearings and the radiated noise (NVH). Acoustic features of the radiated noise can be predicted by utilising the transmitted forces from the bearings. Due to tonal components at higher frequencies and dense modal content, full flexible multibody dynamics simulations are computationally expensive.
Technical Paper

Analysis of the Mechanism by Which Spline Pitch Errors Affect Powertrain Vibration

2024-06-12
2024-01-2910
As environmental concerns have taken the spotlight, electrified powertrains are rapidly being integrated into vehicles across various brands, boosting their market share. With the increasing adoption of electric vehicles, market demands are growing, and competition is intensifying. This trend has led to stricter standards for noise and vibration as well. To meet these requirements, it is necessary to not only address the inherent noise and vibration sources in electric powertrains, primarily from motors and gearboxes, but also to analyze the impact of the spline power transmission structure on system vibration and noise. Especially crucial is the consideration of manufacturing discrepancies, such as pitch errors in splines, which various studies have highlighted as contributors to noise and vibration in electric powertrains. This paper focuses on comparing and analyzing the influence of spline pitch errors on two layout configurations of motor and gearbox spline coupling structures.
Technical Paper

Study of Different Designs of Chevrons for Effective Noise Reduction in Jet Engines

2024-06-01
2024-26-0408
Due to their remarkable efficiency and efficacy, chevrons have emerged as a prominent subject of investigation within the Aviation Industry, primarily aimed at mitigating aircraft noise levels and achieving a quieter airborne experience. Extensive research has identified the engine as the primary source of noise in aircraft, prompting the implementation of chevrons within the engine nozzle. These chevrons function by inducing streamwise vortices into the shear layer, thereby augmenting the mixing process and resulting in a noteworthy reduction of low-frequency noise emissions. Our paper aims to conduct a comparative computational analysis encompassing seven distinct chevron designs and a design without chevrons. The size and configuration of the chevrons with the jet engine nacelle were designed to match the nozzle diameter of 100.48mm and 56.76mm, utilizing the advanced SolidWorks CAD modeling software.
X