Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

Advanced squeak and rattle noise prediction for vehicle interior development – numerical simulation and experimental validation

2024-06-12
2024-01-2925
Squeak and rattle (SAR) noise audible inside a passenger car causes the product quality perceived by the customer to deteriorate. The consequences are high warranty costs and a loss in brand reputation for the vehicle manufacturer in the long run. Therefore, SAR noise must be prevented. This research shows the application and experimental validation of a novel method to predict SAR noise on an actual vehicle interior component. The novel method is based on non-linear theories in the frequency domain. It uses the harmonic balance method in combination with the alternating frequency/time domain method to solve the governing dynamic equations. The simulation approach is part of a process for SAR noise prediction in vehicle interior development presented herein. In the first step, a state-of-the-art linear frequency-domain simulation estimates an empirical risk index for SAR noise emission. Critical spots prone to SAR noise generation are located and ranked.
Technical Paper

CFD Analysis of Cavitation in a Flow through GERotor Pump

2024-06-01
2024-26-0449
A gerotor pump is a positive displacement pump consisting of inner and outer rotors, with axis of inner rotor offset from axis of outer rotor. Both rotors rotate about their respective axes. The volume between the rotors changes dynamically, due to which suction and compression occurs. A gerotor pump may be subject to erosion due to cavitation. This paper details about the CFD methodology that has been used to capture cavitation bubbles which might form during the operation of gerotor pump. A full scale (3D) transient CFD model for gerotor pump has been developed using commercial CFD code ANSYS FLUENT. The most challenging part of this CFD flow modeling is to create a dynamic volume mesh that perfectly represents the dynamically changing rotor fluid volume of the gerotor pump. Two different approaches have been used to model this dynamic mesh analysis in the Ansys Fluent tool - one method by using the traditional UDF script and, another method by using Python automation script.
Technical Paper

Buckling and Post-Buckling Response of 3D Printed Cylindrical Shell with Circular Cutout Under Axial Compression

2024-06-01
2024-26-0418
Despite being ubiquitous elements in aerospace structures, thin cylindrical shells’ catastrophic buckling response under axial compression has still remained an enigma. The recent advancements in theoretical and numerical studies aided in realising the role of localisation in shell buckling. However, the buckling being instantaneous made it unfeasible for the experimental observations to corroborate the numerical results. This necessitates high-fidelity shell buckling experiments using full-filed measurement techniques. Cut-outs are deliberate and inevitable geometrical imperfections in actual structures that could dictate the buckling response. Additive manufacturing makes it feasible to fabricate shells with tailored imperfections and study various conceivable designs.
Technical Paper

Velocity Estimation of a Descending Spacecraft in Atmosphereless Environment using Deep Learning

2024-06-01
2024-26-0484
Landing of spacecraft on Lunar or Martian surfaces is the last and critical step in inter planetary space missions. The atmosphere on earth is thick enough to slow down the craft but Moon or Mars does not provide a similar atmosphere. Moreover, other factors such as lunar dust, availability of precise onboard navigational aids etc would impact decision making. Soft landing meaning controlling the velocity of the craft from over 6000km/h to zero. If the craft’s velocity is not controlled, it might crash. Various onboard sensors and onboard computing power play a critical role in estimating and hence controlling the velocity, in the absence of GPS-like navigational aids. In this paper, an attempt is made using visual onboard sensor to estimate the velocity of the object. The precise estimation of an object's velocity is a vital component in the trajectory planning of space vehicles, particularly those designed for descent onto lunar or Martian terrains, such as orbiters or landers.
Technical Paper

Study of Crew Seat Impact Attenuation System for Indian Manned Space Mission

2024-06-01
2024-26-0469
The descent phase of GAGANYAAN (Indian Manned Space Mission) culminates with a crew module impacting at a predetermined site in Indian waters. During water impact, huge amount of loads are experienced by the astronauts. This demands an impact attenuation system which can attenuate the impact loads and reduce the acceleration experienced by astronauts to safe levels. Current state of the art impact attenuation systems use honeycomb core, which is passive, expendable, can only be used once (at touchdown impact) during the entire mission and does not account off-nominal impact loads. Active and reusable attenuation systems for crew module is still an unexplored territory. Three configurations of impact attenuators were selected for this study for the current GAGANYAAN crew module configuration, namely, hydraulic damper, hydro-pneumatic damper and airbag systems.
Technical Paper

Aerospace Vehicle Motion Simulation with Real-Time Telemetry Data

2024-06-01
2024-26-0483
In any aerospace mission, after the vehicle has taken off, the visual is lost and the information about its current state is only through the sensor data telemetered in real-time. Very often, this data is difficult to perceive and analyze. In such cases, a 3D, near to real representation of the data can immensely improve the understanding of the current state of mission and can aid in real-time decision making if possible. Generally, any aerospace vehicle carries onboard an inertial system along with other sensors, which measures the position and attitude of the vehicle. This data is communicated to ground station. The received telemetry data is encoded as bytes and sent as packets through the network using the Universal Datagram Protocol (UDP).  The transmitted data is often available in a very low frequency, which is not desirable for a smooth display. It is therefore necessary to interpolate the data between intervals based on the time elapsed since last rendered frame.
Technical Paper

Fault Detection in Machine Bearings using Deep Learning - LSTM

2024-06-01
2024-26-0473
In today's industrial sphere, machines are the key supporting various sectors and their operations. Over time, due to extensive usage, these machines undergo wear and tear, introducing subtle yet consequential faults that may go unnoticed. Given the pervasive dependence on machinery, the early and precise detection of these faults becomes a critical necessity. Detecting faults at an early stage not only prevents expensive downtimes but also significantly improves operational efficiency and safety standards. This research focuses on addressing this crucial need by proposing an effective system for condition monitoring and fault detection, leveraging the capabilities of advanced deep learning techniques. The study delves into the application of five diverse deep learning models—LSTM, Deep LSTM, Bi LSTM, GRU, and 1DCNN—in the context of fault detection in bearings using accelerometer data. Accelerometer data is instrumental in capturing vital vibrations within the machinery.
Technical Paper

Synergized Mixed-Signal System-on-Chip (SoC) Design and Development using System-level Modeling and Simulation

2024-06-01
2024-26-0463
In recent decades, research based innovative system-on-chip (SoC) design has been a very important issue, due to the emerging trends and application challenges. The SoCs encompass digital, analog and mixed-signal hardware and software components and even sensors and actuators. Modelling and simulation constitute a powerful method for designing and evaluating complex systems and processes for many analysts and project managers as they engage in state of-the-art research and development. Modelling and simulations not only help them with the algorithm or concept realization and design feasibility, but it also allows experimentation, optimization, interpretation of results and validation of model.
Technical Paper

Deep Learning-Based Digital Twining Models for Inter System Behavior and Health Assessment of Combat Aircraft Systems

2024-06-01
2024-26-0478
Modern combat aircraft demands efficient maintenance strategies to ensure operational readiness while minimizing downtime and costs. Innovative approaches using Digital Twining models are being explored to capture inter system behaviours and assessing health of systems which will help maintenance aspects. This approach employs advanced deep learning protocols to analyze the intricate interactions among various systems using the data collected from various systems. The research involves extensive data collection from sensors within combat aircraft, followed by data preprocessing and feature selection, using domain knowledge and correlation analysis. Neural networks are designed for individual systems, and hyper parameter tuning is performed to optimize their performance. By combining the outputs of these during the model integration phase, an overall health assessment of the aircraft will be generated.
Technical Paper

Inverse Machine Learning Approach for Metasurface based Radar Absorbing Structure Design for Aerospace Applications

2024-06-01
2024-26-0480
Metasurfaces, comprised of sub-wavelength structures, possess remarkable electromagnetic wave manipulation capabilities. Their application as radar absorbers has gained widespread recognition, particularly in modern stealth technology, where their role is to minimize the radar cross-section (RCS) of military assets. Conventional radar absorber design are tedious by their time-consuming, computationally intensive, iterative nature, and demand a high level of expertise. In contrast, the emergence of deep learning-based metasurface design for RCS reduction represents a rapidly evolving field. This approach offers automated and computationally efficient means to generate radar absorber designs. However, the practical implementation of radar-absorbing structures on complex aircraft bodies presents significant challenges.
Technical Paper

Development of Deployment Mechanism for RAMBHA-LP Payload Onboard Chandrayaan-3 Lander

2024-06-01
2024-26-0455
RAMBHA-LP (Radio Anatomy of Moon Bound Hypersensitive Ionosphere and Atmosphere - Langmuir Probe) is one of the key scientific payloads onboard the Indian Space Research Organization’s (ISRO) Chandrayaan-3 mission. Its objectives were to estimate the plasma density and its variations on the near lunar surface. The probe was initially kept in a stowed condition attached to the lander. A mechanism was designed and realized to meet the functional requirement of deploying the probe at a distance of 1 meter, equivalent to the Debye length of the probe in the moon’s plasma environment. The probe deployment mechanism consists of the Titanium alloy spherical probe with a Titanium Nitride coating on its surface to achieve a constant work function, a long carbon-fiber-reinforced polymer boom, a double torsion spring, a dust-protection box, and a shape-memory alloy-based Frangibolt actuator for low-shock separation. The entire mechanism weighed less than 1.5 kilograms.
Technical Paper

Numerical Investigation of Aerodynamic Characteristics on a Blunt Cone Model at Various Angles of Attack under Hypersonic Flow Regimes

2024-06-01
2024-26-0446
The study of aerodynamic forces in hypersonic environments is important to ensure the safety and proper functioning of aerospace vehicles. These forces vary with the angle of attack (AOA) and there exists an optimum angle of attack where the ratio of the lift to drag force is maximum. In this paper, computational analysis has been performed on a blunt cone model to study the aerodynamic characteristics when hypersonic flow is allowed to pass through the model. The flow has a Mach number of 8.44 and the angle of attack is varied from 0º to 20º. The commercial CFD solver ANSYS FLUENT is used for the computational analysis and the mesh is generated using the ICEM CFD module of ANSYS. Air is selected as the working fluid. The simulation is carried out for a time duration of 1.2 ms where it reaches a steady state and the lift and drag forces and coefficients are estimated. The pressure, temperature, and velocity contours at different angles of attack are also observed.
X