Refine Your Search

Topic

Affiliation

Search Results

Training / Education

Vehicle Noise Control Engineering Academy - Vehicle Interior Noise Track

The Vehicle Noise Control Engineering Academy covers a variety of vehicle noise control engineering principles and practices. There are two concurrent, specialty tracks (with some common sessions): Vehicle Interior Noise and Powertrain Noise. Participants should choose and register for the appropriate track they wish to attend. The Vehicle Interior Noise track focuses on understanding the characteristics of noise produced by different propulsion systems, including internal combustion, hybrid and electric powered vehicles and how these noises affect the sound quality of a vehicle’s interior.  
Technical Paper

Metrics based design of electromechanical coupled reduced order model of an electric powertrain for NVH assessment

2024-06-12
2024-01-2913
Electric vehicles offer cleaner transportation with lower emissions, thus their increased popularity. Although, electric powertrains contribute to quieter vehicles, the shift from internal combustion engines to electric powertrains presents new Noise, Vibration, and Harshness challenges. Unlike traditional engines, electric powertrains produce distinctive tonal noise, notably from motor whistles and gear whine. These tonal components have frequency content, sometimes above 10 kHz. Furthermore, the housing of the powertrain is the interface between the excitation from the driveline via the bearings and the radiated noise (NVH). Acoustic features of the radiated noise can be predicted by utilising the transmitted forces from the bearings. Due to tonal components at higher frequencies and dense modal content, full flexible multibody dynamics simulations are computationally expensive.
Technical Paper

Advanced squeak and rattle noise prediction for vehicle interior development – numerical simulation and experimental validation

2024-06-12
2024-01-2925
Squeak and rattle (SAR) noise audible inside a passenger car causes the product quality perceived by the customer to deteriorate. The consequences are high warranty costs and a loss in brand reputation for the vehicle manufacturer in the long run. Therefore, SAR noise must be prevented. This research shows the application and experimental validation of a novel method to predict SAR noise on an actual vehicle interior component. The novel method is based on non-linear theories in the frequency domain. It uses the harmonic balance method in combination with the alternating frequency/time domain method to solve the governing dynamic equations. The simulation approach is part of a process for SAR noise prediction in vehicle interior development presented herein. In the first step, a state-of-the-art linear frequency-domain simulation estimates an empirical risk index for SAR noise emission. Critical spots prone to SAR noise generation are located and ranked.
Technical Paper

Analysis of the Mechanism by Which Spline Pitch Errors Affect Powertrain Vibration

2024-06-12
2024-01-2910
As environmental concerns have taken the spotlight, electrified powertrains are rapidly being integrated into vehicles across various brands, boosting their market share. With the increasing adoption of electric vehicles, market demands are growing, and competition is intensifying. This trend has led to stricter standards for noise and vibration as well. To meet these requirements, it is necessary to not only address the inherent noise and vibration sources in electric powertrains, primarily from motors and gearboxes, but also to analyze the impact of the spline power transmission structure on system vibration and noise. Especially crucial is the consideration of manufacturing discrepancies, such as pitch errors in splines, which various studies have highlighted as contributors to noise and vibration in electric powertrains. This paper focuses on comparing and analyzing the influence of spline pitch errors on two layout configurations of motor and gearbox spline coupling structures.
Technical Paper

Study of Different Designs of Chevrons for Effective Noise Reduction in Jet Engines

2024-06-01
2024-26-0408
Due to their remarkable efficiency and efficacy, chevrons have emerged as a prominent subject of investigation within the Aviation Industry, primarily aimed at mitigating aircraft noise levels and achieving a quieter airborne experience. Extensive research has identified the engine as the primary source of noise in aircraft, prompting the implementation of chevrons within the engine nozzle. These chevrons function by inducing streamwise vortices into the shear layer, thereby augmenting the mixing process and resulting in a noteworthy reduction of low-frequency noise emissions. Our paper aims to conduct a comparative computational analysis encompassing seven distinct chevron designs and a design without chevrons. The size and configuration of the chevrons with the jet engine nacelle were designed to match the nozzle diameter of 100.48mm and 56.76mm, utilizing the advanced SolidWorks CAD modeling software.
Technical Paper

Sustainable Microalgae-Membrane Photobioreactor (MPBR) System for Onboard Oxygen Production in an Aircraft

2024-06-01
2024-26-0402
The purpose of the Air Generation System is to provide a constant supply of conditioned fresh air to meet the necessary oxygen availability and to prevent carbon dioxide (CO2) concentrations for the occupants in an aircraft. The engine bleed energy or electrical load energy consumed towards this circumstance accounts to be approx. 5% of total fuel burn and in turn, contributes to the global emissions of greenhouse gases. This paper studies the improvement areas of the present conventional system such as fuel burn consumption associated with an aircraft environmental control system (ECS) depending on, the amount of bleed and ram air usage, electric power consumption. Improved systems for propulsion, power generation, sustainability, hybridization, and environmental control can be desirable for an aircraft.
Technical Paper

Thermal Analysis of Prismatic Core Sandwich Structural Panel for Hypersonic Application

2024-06-01
2024-26-0422
Hypersonic flight vehicles have potential applications in strategic defence, space missions, and future civilian high-speed transportation systems. However, structural integration has significant challenges due to extreme aero-thermo-mechanical coupled effects. Scramjet-powered air-breathing hypersonic vehicles experience extreme heat loads induced by combustion, shock waves and viscous heat dissipation. An active cooling thermal protection system for scramjet applications has the highest potential for thermal load management, especially for long-duration flights, considering the weight penalty associated with the heavier passive thermal insulation structures. We consider the case of active cooling of scramjet engine structural walls with endothermic hydrocarbon fuel. We have developed a semi-analytical quasi-2D heat transfer model considering a prismatic core single cooling channel segment as a representative volume element (RVE) to analyse larger-scale problems.
Event

Attend - Innovations in Mobility: Aerospace Digital Summit

2024-04-19
Innovations in Mobility: Aerospace Digital Summitaerospace mobility leaders convene leverage cutting-edge technology, design, develop safety measures, integrate current regulations, suggest future policies, expand markets, diversify revenue streams.

Exhibit & Sponsor - 2023 Noise and Vibration Conference and Exhibition

2024-04-19
Learn more about how you can exhibit and sponsor at the 2023 Noise and Vibration Conference & Exhibition (NVC). Connect with a targeted global audience that includes high-level decision makers, influencers, and purchasers involved in NVH and sound quality. You’ll engage with the entire supply chain community – from OEMs and tier suppliers to manufacturers, material developers, researchers, and more – to demonstrate the latest scientific discoveries in NVH technology.
X