Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Ultra-Downsizing of ICEs Based on True Atkinson Cycle Implementations. Thermodynamic Analysis and Comparison on the Indicated Fuel Conversion Efficiency of Atkinson and Classical ICE Cycles

2024-04-09
2024-01-2096
Ultra-Downsizing (UD) was introduced as an even higher level of downsizing for Internal Combustion Engines ICEs, see [2] SAE 2015-01-1252. The introduction of Ultra Downsizing (UD) aims to enhance the power, efficiency, and sustainability of ICEs while maintaining the thermal and mechanical strain within acceptable limits. The following approaches are utilized: 1 True Atkinson Cycles are implemented utilizing an asymmetrical crank mechanism called Variable Compression and Stroke Ratios (VCSR). This mechanism allows for extended expansion stroke and continuous adjustment of the Volumetric Compression Ratio (VCR). 2 Unrestricted two or more stage high-pressure turbocharging and intensive intercooling: This setup enables more complete filling of the cylinder and reduces the compression work on the piston, resulting in higher specific power and efficiency. 3 The new Load Control (LC) approach is based to continuous VCR adjustment.
Technical Paper

Impact of a Split-Injection Strategy on Energy-Assisted Compression-Ignition Combustion with Low Cetane Number Sustainable Aviation Fuels

2024-04-09
2024-01-2698
The influence of a split-injection strategy on energy-assisted compression-ignition (EACI) combustion of low-cetane number sustainable aviation fuels was investigated in a single-cylinder direct-injection compression-ignition engine using a ceramic ignition assistant (IA). Two low-cetane number fuels were studied: a low-cetane number alcohol-to-jet (ATJ) sustainable aviation fuel (SAF) with a derived cetane number (DCN) of 17.4 and a binary blend of ATJ with F24 (Jet-A fuel with military additives, DCN 45.8) with a blend DCN of 25.9 (25 vol.% F24, 75 vol.% ATJ). A pilot injection mass sweep (3.5-7.0 mg) with constant total injection mass and an injection dwell sweep (1.5-3.0 ms) with fixed main injection timing was performed. Increasing pilot injection mass was found to reduce cycle-to-cycle combustion phasing variability by promoting a shorter and more repeatable combustion event for the main injection with a shorter ignition delay.
Standard

Forced Air or Forced Air/Fluid Equipment for Removal of Frozen Contaminants

2024-03-29
WIP
AIR6284A
This SAE Aerospace Information Report (AIR) covers forced air technology including: reference material, equipment, safety, operation, and methodology. This resource document is intended to provide information and minimum safety guidelines regarding use of forced air or forced air/fluid equipment to remove frozen contaminants. During the effective period of this document, relevant sections herein should be considered and included in all/any relevant SAE documents.
Technical Paper

Automatic Switching for Radiation Emission Control Device in Radiographic Testing – Non-Destructive Testing

2024-02-23
2023-01-5108
In radiography testing, the radioactive elements Iridium 192 (Ir192) and Cobalt 60 (Co60) are employed to detect subsurface and inner flaws. These radioactive components are kept secure within the radiation-protected source camera. Despite the fact that the camera is safe, there is a little quantity of radiation that may harm human body cells. In this present study, it restricts radiation emission by placing a lead sheet over the source camera, which absorbs the produced radiation. The innovative concept involves in this present work is to place a manually operated switch near the radiation source to emit radiation.
Technical Paper

Emissions of Aerospace Fuels F-24 and Jet-A in a Jet Engine and Correlation with Combustion Characteristics from a Constant Volume Combustion Chamber

2023-10-31
2023-01-1666
An investigation into emissions differences and their correlations with differing combustion characteristics between F24 and Jet-A was conducted. Raw emissions data was taken from a single stage jet engine by a FTIR gas analyzer. Measurements of H2O, CO2, CO, NOx, and total hydrocarbon emissions (THC) were taken at 60K, 65K, and 70K RPM. At 70K RPM Jet-A and F-24 the emissions were similar at approx.: 4% H2O, 3% CO2, 970 PPM CO, 28 PPM NOx. Jet-A THC emissions were approx.: 1200 PPM THC, F24 THC emissions were lower by over 60%. The significantly lower amount of THC emissions for F24 suggests more complete combustion compared to Jet-A.
Standard

Aircraft Noise Level Reduction Measurement of Building Facades

2023-08-16
WIP
ARP6973A
This proposed revision of the Aerospace Recommended Practice (ARP6973) will provide minor edits to the existing document, plus an alternative third method for measuring the aircraft noise level reduction of building façades that is currently being validated. Airports and their consultants will be able to use any of the three methods presented in this revised ARP to determine the eligibility of structures exposed to aircraft noise to participate in an FAA-funded Airport Noise Mitigation Project, to determine the treatments required to meet project objectives, and to verify that such objectives are satisfied.
Journal Article

Experimental and Numerical Investigation of Combustion and Noise, Vibrations, and Harshness Emissions in a Drone Jet Engine Fueled with Synthetic Paraffinic Kerosene

2023-08-14
Abstract Emissions and effects of climate change have prompted study into fuels that reduce global dependence on traditional fuels. This study seeks to investigate engine performance, thermochemical properties, emissions, and perform NVH analysis of Jet-A and S8 using a single-stage turbojet engine at three engine speeds. Experimental Jet-A results were used to validate a CFX simulation of the engine. Engine performance was quantified using thermocouples, pressure sensors, tachometers, flow meters, and load cells fitted to the engine. Emissions results were collected using an MKS Multigas Emissions Analyzer that examined CO, CO₂, H₂O, NOx, and THC. NVH analysis was conducted using a multifield, free-field microphone, and triaxial accelerometer. This study found that Jet-A operates at higher temperatures and pressures than S8, and S8 requires higher fuel flow rates than Jet-A, leading to poorer efficiency and thrust. S8 produced stronger vibrations over 5 kHz compared to Jet-A.
Standard

Aircraft Deicing Vehicle - Towable Deicers

2023-06-19
WIP
ARP8701
The document aims to provide guidance for safe practices, effective operations and continued compliance with revelant standards and aircraft manufacturer’s recommendations.
Technical Paper

Snow Particle Characterization. Part A: Statistics of Microphysical Properties of Snow Crystal Populations from Recent Observations Performed during the ICE GENESIS Project

2023-06-15
2023-01-1492
Measurements in snow conditions performed in the past were rarely initiated and best suited for pure and extremely detailed quantification of microphysical properties of a series of microphysical parameters, needed for accretion modelling. Within the European ICE GENESIS project, a considerable effort of natural snow measurements has been made during winter 2020/21. Instrumental means, both in-situ and remote sensing were deployed on the ATR-42 aircraft, as well as on the ground (ground station at ‘Les Eplatures’ airport in the Swiss Jura Mountains with ATR-42 overflights). Snow clouds and precipitation in the atmospheric column were sampled with the aircraft, whereas ground based and airborne radar systems allowed extending the observations of snow properties beyond the flight level chosen for the in situ measurements.
Technical Paper

Comparability of Hot-Wire Estimates of Liquid Water Content in SLD Conditions

2023-06-15
2023-01-1423
Future compliance to FAA 14 CFR Part 25 and EASA CS-25 Appendix O conditions has required icing wind tunnels to expand their cloud simulation envelope, and demonstrate accurate calibration of liquid water content and droplet particle size distributions under these conditions. This has led to a renewed community interest in the accuracy of these calibrations, and the potential inter-facility bias due to the choice of instrumentation and processing methods. This article provides a comparison of the response of various hot-wire liquid water content instruments under Appendix C and supercooled large droplet conditions, after an independent similar analysis at other wind tunnel facilities. The instruments are being used, or are under consideration for use, by facilities collaborating in the ICE GENESIS program.
Standard

APU Gas Turbine Engine Test Cell Correlation

2023-05-19
CURRENT
ARP5435A
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of APU (auxiliary power unit) engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. The baseline performance is generally determined at the original equipment manufacturer (OEM) designated test facility. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEMs contributed to the development of this document. Each engine Manufacturer has their own practices relating to correlation and they will be used by those OEMs for the purpose of establishing certified test facilities.
Standard

Turboshaft/Turboprop Gas Turbine Engine Test Cell Correlation

2023-05-19
CURRENT
ARP4755C
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turboprop and turboshaft engines. This Aerospace Recommended Practice (ARP) shall apply to both dynamometer and propeller based testing. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEMs contributed to the development of this document. Each engine manufacturer has their own practices relating to correlation and they will be used by those OEMS for the purpose of establishing certified test facilities.
Standard

Turbofan and Turbojet Gas Turbine Engine Test Cell Correlation

2023-05-01
CURRENT
ARP741D
This SAE Aerospace Recommended Practice (ARP) describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turbofan and turbojet engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. When baseline testing is performed in an indoor test cell, the baseline performance data are adjusted to open air conditions. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEM’s contributed to the development of this document. Each engine Manufacturer has their own practices relating to correlation and they will be used by those OEMs for the purpose of establishing certified test facilities.
Standard

Procedure for the Continuous Sampling and Measurement of Gaseous Emissions from Aircraft Turbine Engines

2023-04-12
CURRENT
ARP1256E
This SAE Aerospace Recommended Practice (ARP) describes the continuous sampling and analysis of gaseous emissions from aircraft gas turbine engines. The measured gas species include carbon monoxide (CO), carbon dioxide (CO2), nitric oxide (NO), nitrogen dioxide (NO2), hydrocarbons (HC), and water vapor (H2O). This ARP excludes engine operating procedures and test modes, and is not intended for in-flight testing, nor does it apply to engines operating in the afterburning mode. It is recognized that there will probably be major advances in the gas analysis measurement technology. It is not the intent of this ARP to exclude other analysis techniques, but to form the basis of the minimum amount of conventional instruments (those in common industry usage over the last fifteen years) required for the analysis of aircraft engine exhaust.
Technical Paper

Combustion Characteristics of Low DCN Synthetic Aviation Fuel, IPK, in a High Compression Ignition Indirect Injection Research Engine

2023-04-11
2023-01-0272
The Coal-To-Liquid (CTL) synthetic aviation fuel, Iso-Paraffinic Kerosene (IPK), was studied for ignition delay, combustion delay, pressure trace, pressure rise rate, apparent heat release rate in an experimental single cylinder indirect injection (IDI) compression ignition engine and a constant volume combustion chamber (CVCC). Autoignition characteristics for neat IPK, neat Ultra-Low Sulfur Diesel (ULSD), and a blend of 50%IPK and 50% ULSD were determined in the CVCC and the effects of the autoignition quality of each fuel were determined also in an IDI engine. ULSD was found to have a Derived Cetane Number (DCN) of 47 for the batch used in this experimentation. IPK was found to have a DCN of 25.9 indicating that is has a lower affinity for autoignition, and the blend fell between the two at 37.5. Additionally, it was found that the ignition delay for IPK in the CVCC was 5.3 ms and ULSD was 3.56 ms.
Technical Paper

Combined Impacts of Engine Speed and Fuel Reactivity on Energy-Assisted Compression-Ignition Operation with Sustainable Aviation Fuels

2023-04-11
2023-01-0263
The combined impacts of engine speed and fuel reactivity on energy-assisted compression-ignition (EACI) combustion using a commercial off-the-shelf (COTS) ceramic glow plug for low-load operation werexxz investigated. The COTS glow plug, used as the ignition assistant (IA), was overdriven beyond its conventional operation range. Engine speed was varied from 1200 RPM to 2100 RPM. Three fuel blends consisting of a jet-A fuel with military additives (F24) and a low cetane number alcohol-to-jet (ATJ) sustainable aviation fuel (SAF) were tested with cetane numbers (CN) of 25.9, 35.5, and 48.5. The ranges of engine speed and fuel cetane numbers studied are significantly larger than those in previous studies of EACI or glow-plug assisted combustion, and the simultaneous variation of engine speed and fuel reactivity are unique to this work. For each speed and fuel, a single-injection of fixed mass was used and the start of injection (SOI) was swept for each IA power.
Standard

Fuel Flow Rates for Jet-Powered Commercial Aircraft Taxi Operations

2023-04-04
CURRENT
AIR8035
This SAE Aerospace Information Report (AIR) summarizes prior empirical findings (AIAA 2018-3991; Chati, 2018) to recommend a modified baseline fuel flow rate model for jet-powered commercial aircraft during taxi operations on the airport surface that better reflects operational values. Existing standard modeling approaches are found to significantly overestimate the taxi fuel flow rate; therefore, a modified multiplicative factor is recommended to be applied to these existing approaches to make them more accurate. Results from the analysis of operational flight data are reported, which form the basis for the modeling enhancements being recommended.
Standard

Procedures for the Calculation of Airplane Fuel Consumption

2022-09-30
CURRENT
AIR6183
This SAE Aerospace Information Report (AIR) describes procedures for calculating fuel consumption for civil jet airplanes through all modes of operation for all segments of a flight. Turboprop and piston airplanes, as well as helicopters or unconventional aircraft, are not included in this AIR. The principle purpose of these procedures is to assist model developers in calculating airplane fuel consumption in a consistent and accurate manner that can be used to address various environmental assessments including those related to policy decisions and regulatory requirements. This AIR is intended to directly support the emission calculations documented in AIR5715. The models described in this AIR are intended to be used from the start of the takeoff roll to the end of the ground roll; taxi fuel consumption models are not included. If modelers have access to higher fidelity methods, they should use those methods in lieu of the ones in this AIR.
X