Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

Effect of Intake Conditions (Temperature, Pressure and EGR) on the Operation of a Dual-Fuel Marine Engine with Methanol

2023-08-28
2023-24-0046
In the upcoming decade sustainable powertrain technologies will seek for market entrance in the transport sector. One promising solution is the utilization of dual-fuel engines using renewable methanol ignited by a pilot diesel fuel. This approach allows the displacement of a significant portion of fossil diesel, thereby reducing greenhouse gas emissions. Additionally, this technology is, next to newbuilds, suited for retrofitting existing engines, while maintaining high efficiencies and lowering engine-out emissions. Various researchers have experimentally tested the effects of replacing diesel by methanol and have reported different boundaries for substituting diesel by methanol, including misfire, partial burn, knock and pre-ignition. However, little research has been conducted to explore ways to extend these substitution limits.
Technical Paper

Modeling of a Methanol Fueled Direct-Injection Spark-Ignition Engine with Reformed-Exhaust Gas Recirculation

2021-04-06
2021-01-0445
Methanol is a promising fuel for future spark-ignition engines. Its properties enable increased engine efficiency. Moreover, the ease with which methanol can be reformed, using waste exhaust heat, potentially offers a pathway to even higher efficiencies. The primary objective of this study was to build and validate a model for a methanol fueled direct-injection spark-ignition engine with on-board fuel reforming for future investigation and optimization. The second objective was to understand the combustion characteristics, energy losses and engine efficiency. The base engine model was developed and calibrated before adding a reformed-exhaust gas recirculation system (R-EGR). A newly developed laminar burning velocity correlation with universal dilution term was implemented into the model to predict the laminar burning velocity with the presence of hydrogen in the reforming products.
Technical Paper

Cold Flow Simulation of a Dual-Fuel Engine for Diesel-Natural Gas and Diesel-Methanol Fuelling Conditions

2021-04-06
2021-01-0411
In this work, the possibility to perform a cold-flow simulation as a way to improve the accuracy of the starting conditions for a combustion simulation is examined. Specifically, a dual-fuel marine engine running on methanol/diesel and natural gas/diesel fueling conditions is investigated. Dual-fuel engines can provide a short-term solution to cope with the more stringent emission legislations in the maritime sector. Both natural gas and methanol appear to be interesting alternative fuels that can be used as main fuel in these dual-fuel engines. Nevertheless, it is observed that combustion problems occur at part load using these alternative fuels. Therefore, different methods to increase the combustion efficiency at part load are investigated. Numerical simulations prove to be very suitable hereto, as they are an efficient way to study the effect of different parameters on the combustion characteristics.
Technical Paper

Combustion Characterization of Methanol in a Lean Burn Direct Injection Spark Ignition (DISI) Engine

2019-04-02
2019-01-0566
Lean operation is a promising approach to increase the engine efficiency. One of the main challenges for lean-burn technology is the combustion instability. Using a high laminar burning velocity fuel such as methanol might solve that problem. The potential of lean-burn limit extension with methanol was investigated through a comparison with conventional gasoline. In this work, a direct injection turbocharged SI engine was operated at wide open throttle (WOT), with the load controlled by a lean-burn strategy. The amount of fuel was decreased (or lambda increased) until the combustion became unstable. For methanol, the lambda limit was about 1.5, higher than the lambda limit for gasoline which was only about 1.2. The brake thermal efficiency for methanol increased as lambda increased and reached its peak at ~41% in a lambda range of 1.2-1.4. Then, the efficiency decreased as lambda increased.
Technical Paper

Studying the Effect of the Flame Passage on the Convective Heat Transfer in a S.I. Engine

2017-03-28
2017-01-0515
Engine optimization requires a good understanding of the in-cylinder heat transfer since it affects the power output, engine efficiency and emissions of the engine. However little is known about the convective heat transfer inside the combustion chamber due to its complexity. To aid the understanding of the heat transfer phenomena in a Spark Ignition (SI) engine, accurate measurements of the local instantaneous heat flux are wanted. An improved understanding will lead to better heat transfer modelling, which will improve the accuracy of current simulation software. In this research, prototype thin film gauge (TFG) heat flux sensors are used to capture the transient in-cylinder heat flux within a Cooperative Fuel Research (CFR) engine. A two-zone temperature model is linked with the heat flux data. This allows the distinction between the convection coefficient in the unburned and burned zone.
Technical Paper

Development of Laminar Burning Velocity Correlation for the Simulation of Methanol Fueled SI Engines Operated with Onboard Fuel Reformer

2017-03-28
2017-01-0539
Methanol fueled spark ignition (SI) engines have the potential for very high efficiency using an advanced heat recovery system for fuel reforming. In order to allow simulation of such an engine system, several sub-models are needed. This paper reports the development of two laminar burning velocity correlations, corresponding to two reforming concepts, one in which the reformer uses water from an extra tank to produce hydrogen rich gas (syngas) and another that employs the water vapor in the exhaust gas recirculation (EGR) stream to produce reformed-EGR (R-EGR). This work uses a one-dimensional (1D) flame simulation tool with a comprehensive chemical kinetic mechanism to predict the laminar burning velocities of methanol/syngas blends and correlate it. The syngas is a mixture of H2/CO/CO2 with a CO selectivity of 6.5% to simulate the methanol steam reforming products over a Cu-Mn/Al catalyst.
Technical Paper

Experimental Investigation and Modelling of the In-Cylinder Heat Transfer during Ringing Combustion in an HCCI Engine

2017-03-28
2017-01-0732
Homogeneous Charge Compression Ignition (HCCI) engines can achieve both a high thermal efficiency and near-zero emissions of NOx and soot. However, their maximum attainable load is limited by the occurrence of a ringing combustion. At high loads, the fast combustion rate gives rise to pressure oscillations in the combustion chamber accompanied by a ringing or knocking sound. In this work, it is investigated how these pressure oscillations affect the in-cylinder heat transfer and what the best approach is to model the heat transfer during ringing combustion. The heat transfer is measured with a thermopile heat flux sensor inside a CFR engine converted to HCCI operation. A variation of the mass fuel rate at different compression ratios is performed to measure the heat transfer during three different operating conditions: no, light and severe ringing. The occurrence of ringing increases both the peak heat flux and the total heat loss.
Technical Paper

Demonstrating the Use of Thin Film Gauges for Heat Flux Measurements in ICEs: Measurements on an Inlet Valve in Motored Operation

2016-04-05
2016-01-0641
To optimize internal combustion engines (ICEs), a good understanding of engine operation is essential. The heat transfer from the working gases to the combustion chamber walls plays an important role, not only for the performance, but also for the emissions of the engine. Besides, thermal management of ICEs is becoming more and more important as an additional tool for optimizing efficiency and emission aftertreatment. In contrast little is known about the convective heat transfer inside the combustion chamber due to the complexity of the working processes. Heat transfer measurements inside the combustion chamber pose a challenge in instrumentation due to the harsh environment. Additionally, the heat loss in a spark ignition (SI) engine shows a high temporal and spatial variation. This poses certain requirements on the heat flux sensor. In this paper we examine the heat transfer in a production SI ICE through the use of Thin Film Gauge (TFG) heat flux sensors.
Journal Article

Calibration of a TFG Sensor for Heat Flux Measurements in a S.I. Engine

2015-04-14
2015-01-1645
In the development of internal combustion engines, measurements of the heat transfer to the cylinder walls play an important role. These measurements are necessary to provide data for building a model of the heat transfer, which can be used to further develop simulation tools for engine optimization. This research will focus on the Thin Film Gauge (TFG) heat flux sensor. This sensor consists of a platinum RTD (Resistance Temperature Detector) on an insulating Macor® (ceramic) substrate. The sensor has a high frequency response (up to 100 kHz) and is small and robust. These properties make the TFG sensor adequate for measurements in the combustion chamber of an internal combustion engine. To use this sensor, its thermal properties - namely the temperature sensitivity coefficient and the thermal product - must be correctly calibrated. First, different calibration setups with a different temperature range are used to calibrate the temperature sensitivity coefficient of the TFG sensor.
Technical Paper

Evaluation of Some Important Boundary Conditions for Spray Measurements in a Constant Volume Combustion Chamber

2013-04-08
2013-01-1610
Fuel atomization and combustion at engine-like conditions are complicated and sensitive processes which make it hard to perform quantitative experiments with high precision and reproducibility. A better understanding of the processes can be obtained by controlling the boundary conditions. Variable parameters with an important influence on the sprays include fuel temperature, chamber temperature, injection pressure, gas velocity. Controlling all these parameters in an experimental setup is not evident since a lot of them fluctuate with time or interact with each other. Constant volume combustion chambers, using the pre-combustion method, have already shown to be a useful experimental tool for this kind of research purposes. The obtained quantitative results can in a next step be used to evaluate either multi-dimensional or simplified lower dimensional models.
Technical Paper

Drive Cycle Analysis of Load Control Strategies for Methanol Fuelled ICE Vehicle

2012-09-10
2012-01-1606
The use of methanol as spark-ignition engine fuel can help to increase energy security and offers the prospect of carbon neutral transport. Methanol's properties enable considerable improvements in engine performance, efficiency and CO2 emissions compared to gasoline operation. SAE paper 2012-01-1283 showed that both flex-fuel and dedicated methanol engines can benefit from an operating strategy employing exhaust gas recirculation (EGR) to control the load while leaving the throttle wide open (WOT). Compared to throttled stoichiometric operation, this reduces pumping work, cooling losses, dissociation and engine-out NOx. The current paper presents follow-up work to determine to what extent these advantages still stand over an entire drive cycle. The average vehicle efficiency, overall CO2 and NOx emissions from a flexible fuel vehicle completing a drive cycle on gasoline and methanol were evaluated.
Technical Paper

Development and Testing of an EGR System for Medium Speed Diesel Engines

2012-04-16
2012-01-0680
Medium speed diesel engines are well established today as a power source for heavy transport and stationary applications and it appears that they will remain so in the future. However, emission legislation becomes stricter, reducing the emission limits of various pollutants to extremely low values. Currently, many techniques that are well established for automotive diesel engines (common rail, after treatment, exhaust gas recirculation - EGR, …) are being tested on these large engines. Application of these techniques is far from straightforward given the different requirements and boundary conditions (fuel quality, durability, …). This paper reports on the development and experimental results of cooled, high pressure loop EGR operation on a 1326kW four stroke turbocharged medium speed diesel engine, with the primary goal of reducing the emission of oxides of nitrogen (NOx). Measurements were performed at various loads and for several EGR rates.
Technical Paper

Spray Parameter Comparison between Diesel and Vegetable Oils for Non-Evaporating Conditions

2012-04-16
2012-01-0461
The internal combustion engine with compression ignition is still the most important power plant for heavy duty transport, railway transport, marine applications and generator sets. Fuel cost and emission regulations drive manufacturers to switch to alternative fuels. The understanding and prediction of these fuels in the spray and combustion process will be very important for these issues. In the past, lot of research was done for conventional diesel fuel by optically analyzing both spray and combustion. However comparison between different groups is difficult since qualitative results and accuracies are depending in the used definitions and methods. The goal of present research is to verify the behavior pure oils compared to more standard fuels while paying lot of attention to the interpretation of the measurement results.
Technical Paper

Experimental Evaluation of Lean-burn and EGR as Load Control Strategies for Methanol Engines

2012-04-16
2012-01-1283
The use of light alcohols as SI engine fuels can help to increase energy security and offer the prospect of carbon neutral transport. These fuels enable improvements in engine performance and efficiency as several investigations have demonstrated. Further improvements in efficiency can be expected when switching from throttled stoichiometric operation to strategies using mixture richness or exhaust gas recirculation (EGR) to control load while maintaining wide open throttle (WOT). In this work the viability of throttleless load control using EGR (WOT EGR) or mixture richness (WOT lean burn) as operating strategies for methanol engines was experimentally verified. Experiments performed on a single-cylinder engine confirmed that the EGR dilution and lean burn limit of methanol are significantly higher than for gasoline. On methanol, both alternative load control strategies enable relative indicated efficiency improvements of about 5% compared to throttled stoichiometric operation.
Journal Article

Effects of Supercharging, EGR and Variable Valve Timing on Power and Emissions of Hydrogen Internal Combustion Engines

2008-04-14
2008-01-1033
Hydrogen-fueled internal combustion engines equipped with port fuel injection offer a cheap alternative to fuel cells and can be run in bi-fuel operation side-stepping the chicken and egg problem of availability of hydrogen fueling station versus hydrogen vehicle. Hydrogen engines with external mixture formation have a significantly lower power output than gasoline engines. The main causes are the lower volumetric energy density of the externally formed hydrogen-air mixture and the occurrence of abnormal combustion phenomena (mainly backfire). Two engine test benches were used to investigate different means of compensating for this power loss, while keeping oxides of nitrogen (NOx) emissions limited. A single cylinder research engine was used to study the effects of supercharging, combined with exhaust gas recirculation (EGR). Supercharging the engine results in an increase in power output.
Technical Paper

Combustion Studies for PFI Hydrogen IC Engines

2007-08-05
2007-01-3610
Interest in alternative fuels is motivated by concerns for greenhouse gas accumulation, air quality, security of energy supply and of course the non-stop increasing crude oil and natural gas prices. Hydrogen usage can be a solution for these problems. Hydrogen plays the role of an energy carrier that has two major advantages: it can be generated from many sources and it is very clean in its use. One end-use technology that can handle hydrogen is the well-known internal combustion engine (ICE). However, before this technology can be put to use, it needs to be able to compete with conventionally fuelled power units. Particularly in terms of specific power output and NOX emissions, development work needs to be done. In the work described in this paper the main focus is on the combustion strategies for high efficiency and low NOx emissions. A comparison is made between lean burn and EGR (exhaust gas recirculation) strategies.
Technical Paper

A Critical Review of Experimental Research on Hydrogen Fueled SI Engines

2006-04-03
2006-01-0430
The literature on hydrogen fueled internal combustion engines is surprisingly extensive and papers have been published continuously from the 1930's up to the present day. Ghent University has been working on hydrogen engines for more than a decade. A summary of the most important findings, resulting from a literature study and the experimental work at Ghent University, is given in the present paper, to clarify some contradictory claims and ultimately to provide a comprehensive overview of the design features in which a dedicated hydrogen engine differs from traditionally fueled engines. Topics that are discussed include abnormal combustion (backfire, pre-ignition and knock), mixture formation techniques (carbureted, port injected, direct injection) and load control strategies (power output versus NOx trade-off).
X