Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Monoglyceride Content in Marine Diesel Fuel-A Guide

2014-10-13
2014-01-2775
Problems with the low-temperature operability performance of biodiesel in blends with petroleum diesel are infrequent, but continue to limit the use of biodiesel during winter months. A troubling aspect of this problem is that in some cases precipitates above the blend Cloud Point (CP) have been detected and have led to plugging of fuel filters and subsequent engine stalling, as well as plugging of fuel dispenser filters. Many researchers found that the saturated monoglyceride content was a main component of the material that was found on plugged fuel filters, as well as traces of Saturated DiGlycerides (SDG), were also present on the plugged fuel filters. This is the reason which forced the organization of standardization to suggest a procedure in order to predict the content of the Saturated MonoGlycerides (SMG) even with uncertainty which can vary from −50% to +50%. The model which was used will be the same as that which was introduced in the Annex C of EN 14214+A1:2013.
Technical Paper

Assessment of the Oxidation Stability of Biodiesel Fuel using the Rancimat and the RSSOT methods

2014-10-13
2014-01-2758
For many years Rancimat was the only standardized method for measuring the oxidation stability of FAME and FAME/diesel blends. However this method is not applicable to pure conventional petroleum products and so the effect of FAME on diesel fuel stability could not be evaluated directly. Recently a Rapid Small Scale Oxidation Test (RSSOT) that covers the determination of the stability of biofuels and petroleum products was developed and standardized. In this study the oxidation stability of seven different types of FAMEs was assessed, either neat or blended with three types of ULSD fuel, by employing both the Rancimat and the RSSOT accelerated oxidation methods. The determinations from either test were analyzed and a comparative assessment of these two method was carried out.
Journal Article

Impact of Simultaneous ETBE and Ethanol Addition on Motor Gasoline Properties

2008-10-06
2008-01-2503
This study examines the impact of ETBE and ethanol addition on the main properties of motor gasoline. European Union mandates the use of biofuels in all transport fuels, according to the 2003/30/EC Directive. The addition of ethanol, a known octane enhancing component, in small proportions significantly increases the vapor pressure of the final gasoline, exceeding the maximum specification limits. ETBE (ethyl tert-butyl ether) is on the other hand an excellent but expensive octane enhancing component with beneficial impact on vapor pressure of the final gasoline. This paper examines the ability of ETBE to act as a stabilizer in gasoline - ethanol blends. Two gasoline samples with different chemical compositions and characteristics were prepared by blending basic refinery components. In each sample, ETBE was added in concentrations of 2, 4, and 6 % V/V respectively. In each of these ETBE - gasoline blends, ethanol was added in concentrations from 1 to 6 % V/V in 1% steps.
X