Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Throttle Position Sensor Components Assembly Integrated into the Throttle Body Manufacturing Process

2002-11-19
2002-01-3391
In the engine management systems field, there is lack of sensors locally built and available for sale in Brazil. Therefore, many auto parts companies have to import them affecting directly the final products costs (technology know-how/development costs, import taxes and other material handling/custom related costs). This paper was motivated to study an alternative for a simple, cheaper and locally made throttle position sensor. The choose of this part was because the fact that it is one of the most expensive in the throttle body bill of. For developing this new alternative, it was used a tool called value analysis and value engineering. The outcome of this study was a throttle position sensor function integrated to the throttle body manufacturing line with the advantages that 100% components can be locally purchased, improved robustness against humidity and component quantity reduction by 40%. Therefore achieving more value added.
Technical Paper

Analysis of Factors Affecting Rainwater Ingestion into Vehicles HVAC Systems

2001-03-05
2001-01-0293
The penetration of rainwater through the heating ventilation and air conditioning system (HVAC) of a vehicle directly affects the provision of thermal comfort within the vehicle passenger compartment. Present vehicle designs restrict considerably the air-management processes due to reduced space and tighter packaging. The motivation for the study is to get an insight into factors affecting the water ingress phenomenon when a stationary vehicle is subjected to water loading such as heavy rain when parked or waiting in a traffic light or when in a car wash. The test programme made use of a compact closed circuit full-scale automotive climatic wind tunnel that is able to simulate wind, rain and road inclination. The tunnel was developed as part of the collaborative research between the Flow Diagnostics Laboratory (FDL) of the University of Nottingham and Visteon Climate Control Systems [1].
Technical Paper

Future Automotive Multimedia Subsystem Interconnect Technologies

2000-11-01
2000-01-C028
For the past decade or so, automotive entertainment subsystem architectures have consisted of a simple Human Machine Interface (HMI), AM-FM tuner, a tape deck, an amplifier and a set of speakers. Over time, as customer demand for more entertainment features increased, automotive entertainment integrators made room for new features by allowing for the vertical integration of analog audio and adding a digital control. The new digital control came to entertainment subsystems via a low-speed multiplexing scheme embedded into the entertainment subsystem components, allowing remote control of these new features. New features were typically incorporated into the entertainment subsystem by independently packaging functional modules. Examples of these modules are cellular telephone, Compact Disc Jockey (CDJ), rear-seat entertainment, Satellite Digital Audio Radio System (S-DARS) receiver, voice and navigation with its associated display and hardware.
Technical Paper

Numerical Study on Swirl-Type High-Dilution Stratified EGR Combustion System

2000-06-19
2000-01-1949
High-dilution stratified EGR combustion system operating at stoichiometric air-fuel ratio (A/F) could offer significant fuel economy saving comparable to the lean burn or stratified charge direct injection SI engines, while still complies with stringent emission standards by using the conventional three-way catalytic converter. The most critical challenge is to keep substantial separation between EGR gas and air-fuel mixture, or to minimize the mixing between these two zones to an acceptable level for stable and complete combustion. Swirl-type stratified EGR and air-fuel flow structure is considered desirable for this purpose, because the circular engine cylinder tends to preserve the swirl motion and the axial piston movement has minimal effect on the flow structure swirling about the same axis. In this study, KIVA3V was used to simulate mixing and combustion processes in a typical pent-roof gasoline engine cylinder during compression and expansion strokes.
Technical Paper

Development of a Closed Loop, Full Scale Automotive Climatic Wind Tunnel

2000-03-06
2000-01-1375
A closed loop full-scale automotive climatic wind tunnel is described. The tunnel simulates wind and rain as well as several road conditions. It generates under controlled heat loading, wind speeds of up to 50kmh with different approach boundary conditions, rains from drizzle to cloudburst and road inclines up to 15° in any direction. The design and optimization process of the tunnel functions is outlined and examples of its use in vehicle development are given. The size constraint and the need for a compact design are important features of the tunnel. The tunnel provides an important test bed for close scrutiny of the relationship between rain ingress, vehicle speed, road condition, heat loading and vehicle geometry. The tunnel can also be used to study vehicle thermal management, vehicle thermal comfort, engine cold starting, and wipers efficiency in sever cold weather.
Technical Paper

Seat System Key Life Test

2000-03-06
2000-01-1190
An accelerated seat durability test was developed to identify potential problems in areas with traditionally high warranty cost and customer dissatisfaction: squeak & rattle and mechanism looseness & efforts. The test inputs include temperature, humidity, road vibration, occupant movements, and mechanism cycling. These inputs were combined into a single 14-day test profile that simulates 10 years and 250,000 km. (approximately 150,000 miles) of 95th percentile customer usage. Various components of the seat assembly are tested together as a system. The test was performed on two current production programs. The test produced issues similar to those found in warranty repair data and evaluations of used seats from high-mileage customer-owned vehicles.
Technical Paper

The Effects of Outlet Geometry on Automotive Demister Performance

2000-03-06
2000-01-1277
The established method of clearing a misted car windshield or of maintaining a clear view under misting conditions is through the application of an air supply via jet outlets in the instrument panel. The ability of such arrangements to perform adequately is a function of the prevailing environmental conditions, the vehicle speed, the condition of the demist air source and the geometry and arrangement of the jet outlets. This paper presents experimental data obtained in a purpose built environmental chamber designed to accommodate simple rectangular jets impinging on a misted glass surface. The facility consists of three conditioned air sources applied to a test chamber designed to represent the external, internal and demist air flows. Mist conditions on the glass surface are determined using a novel technique employing a CCD camera acquiring grey scale images which are digitally analysed to generate mist detection, grading and clearing contour data.
Technical Paper

Cycle-Model Assessment of Working Fluids for a Low-Pressure CO2 Climate Control System

2000-03-06
2000-01-0578
A low-pressure CO2-based climate-control system has the environmental benefits of CO2 refrigerant but avoids the extremely high pressures of the transcritical CO2 cycle. In the new cycle, a liquid “cofluid” is circulated in tandem with the CO2, with absorption and desorption of CO2 from solution replacing condensation/gas cooling and evaporation of pure CO2. This work compares the theoretical performance of the cycle using two candidate cofluids: N-methyl-2-pyrrolidone and acetone. The optimal coefficient of performance (COP) and refrigeration capacity are discussed in terms of characteristics of the CO2-cofluid mixture. Thermodynamic functions are determined either from an activity coefficient model or using the Soave equation of state, with close agreement between the two approaches. Reductions in COP due to nonideal compressor and heat exchangers are also estimated.
Technical Paper

Reduced Pressure Carbon Dioxide Cycle for Vehicle Climate Control: Progress Since 1999

2000-03-06
2000-01-0577
Environmental concerns have spawned renewed interest in naturally occurring refrigerants such as carbon dioxide. CO2 has attractive features such as high enthalpy of evaporation and low cost compared to halocarbons. However, the vapor pressure of CO2 is high at temperatures normally encountered in refrigeration and air conditioning systems when compared to traditional and alternative refrigerants such as CFC-12 and HFC-134a. Major research efforts are underway to investigate the transcritical CO2 cycle, in which a gas cooler instead of a condenser accomplishes heat rejection to ambient, since carbon dioxide in this cycle is above the critical point. The vapor pressure in the gas cooler may exceed 120 bar (1,740 lb/in2). In this paper a reduced pressure carbon dioxide system is revisited1, 2. The working fluid is a mixture of CO2 and a non-volatile liquid, referred to as a co-fluid, in which CO2 is highly soluble and readily absorbed and desorbed.
Technical Paper

Effect of Desiccant on the Stability of Automotive Air Conditioning Systems

2000-03-06
2000-01-0983
Desiccant materials are commonly used in the automotive industry to reduce the level of moisture in vehicle air conditioning systems. The primary purpose for removing moisture from these systems is to avoid corrosion of metals, compatibility problems with polymeric materials, and possible freeze-up associated with free water. In nonpolar R-12/mineral oil systems with low solubility for water, moisture levels are usually controlled to 25 ppm or less. However, R-134a and PAG are highly polar and have good solubility for moisture, thus presenting reduced risk of free water in the air-conditioning systems. This paper addresses the questions of whether desiccants are required in air conditioning systems using R- 134a/PAG, and if required, what is the optimum quantity of desiccant for system stability and long-term system reliability Tests were conducted in the laboratory (accelerated sealed tube aging according to ASHRAE standard 97- 1989) as well as in the field (vehicle fleet tests).
Technical Paper

Closed-Loop Recycling of Monomaterial Door-Panel Systems

1999-09-28
1999-01-3154
Pressures to increase the recyclable and recycled content of passenger vehicles are accelerating. In Europe, there is interest in eliminating halogenated polymers. Globally, more and more concern is focused on materials and methods that are ecologically friendly. Automakers and their suppliers are being encouraged to design and assemble components in new ways to facilitate separation, identification, and resource recovery at the end of the vehicle’s useful life - something that is not only good for the environment, but also the bottom line. One area of the vehicle that has proved challenging for applying such design for disassembly and recycling (DFD/R) principles has been the interior, owing to the sheer number of materials used there, and the great number of laminate structures that make disassembly nearly impossible. A good example is a door panel inner, which typically consists of a rigid plastic substrate, a foam pad, and a vinyl, leather, or cloth covering.
Technical Paper

Computation of Sound Propagation in an Automotive Air Handling System

1999-05-17
1999-01-1807
Sound propagation in a typical automotive air handling system was studied using the finite element and boundary element methods. The focus was on sound propagation characters and critical resonant frequencies of the system. A given sound source was applied as the excitation to the system. Frequency response analyses were performed, emphasizing the low and mid frequency ranges. The predicted critical frequencies, associated modal configurations, and corresponding sound pressure level fields were investigated. Both the finite element and boundary element methods were applied, and results by the two methods were compared and discussed.
Technical Paper

Thermodynamic and Cycle Models for a Low-Pressure CO2 Refrigeration Cycle

1999-03-01
1999-01-0869
Carbon dioxide (CO2)-based refrigeration systems have been proposed as environmentally benign alternatives to current automotive air conditioners. The CO2 vapor-compression system requires very high operating pressures and complicated control strategies. Recent experimental results indicate that operating pressures comparable to those of current automotive air conditioners can be attained by the inclusion of a secondary carrier fluid (a “co-fluid”), with solution and desolution of the CO2 from the co-fluid substituting for condensation and vaporization of pure CO2. In this work, modeling tools have been developed to optimize the CO2/co-fluid cycle, including the selection of a co-fluid, the CO2/co-fluid ratio (the “loading”), and the operating conditions.
Technical Paper

Reduced Pressure Carbon Dioxide Cycle for Vehicle Climate Control

1999-03-01
1999-01-0868
Environmental concerns have spawned renewed interest in naturally occurring refrigerants such as carbon dioxide. CO2 has attractive features such as high enthalpy of evaporation and low cost compared to halocarbons. However, the vapor pressure of CO2 is high at temperatures normally encountered in refrigeration and air conditioning systems when compared to traditional and alternative refrigerants such as CFC-12 and HFC-134a. Major research efforts are underway to investigate the transcritical CO2 cycle, in which a gas cooler instead of a condenser accomplishes heat rejection to ambient, since carbon dioxide under these conditions is above the critical point. The vapor pressure in the gas cooler may exceed 120 bar (1,740 lb/in2). In this paper a reduced pressure carbon dioxide system is reported (Ref 1). Two companion papers will address properties of working fluids (Ref 2) and thermodynamic and cycle models (Ref 3) for the low pressure carbon dioxide cycle.
Technical Paper

The Effect of Coating Composition on the Friction Induced Paint Damageability of Painted Thermoplastic Olefins (TPOs)

1999-03-01
1999-01-1205
Damage to painted automotive plastics induced by Hertzian contact stresses continues to plague the material engineer involved in the design and selection of fascias, bumpers, body-side moldings, and the like. Studies conducted to determine the root cause of such failures have focused on the effects of paint and the role of friction in the compressive, tensile and shear failure of painted thermoplastic olefins (TPOs). The study described herein probes the effects of paint type on the compressive, tensile and shear damage resistance of painted TPO substrates. Coating variations, e.g., adhesion promoter and topcoat type, and their effect on damage type and damage sensitivity will be described. The apparatus utilized to impart the damage, SLIDO, and the variables studied affecting the damage, e.g., acceleration, velocity, temperature, and loading pressure, are also discussed.
Technical Paper

Development of Dust Separator/Filter for Automotive Fuel Vapor Storage Systems (FVSS)

1999-03-01
1999-01-0008
Fuel Vapor Storage Systems (FVSS) on automobiles are susceptible to particle contamination. This is especially true for FVSS components mounted under the automobiles (undercarriage, chassis frame, etc.) and required to meet stringent EPA standards. Particle contamination significantly increases system restriction and reduces the effectiveness of FVSS. This paper describes a dust separator/filter developed to protect the FVSS. Accelerated field durability evaluations and measurement techniques were developed to identify clean locations, ingested contamination levels and ingested contaminant size distributions. Based on field evaluations, test methods were developed in the lab to evaluate effectiveness of several devices to control and reduce contamination. The dust separator design developed was a combination of baffle separators in series with an open cell foam filter. The dust separator was designed to meet and exceed several vehicle system design requirements.
Technical Paper

Innovative Total Waste Management Program: Aligning Environmental, Manufacturing, and Corporate Citizenship Objectives

1999-03-01
1999-01-0357
Establishing manufacturing environmental leadership while maintaining overall cost competitiveness is a difficult challenge facing the auto industry. In many cases, environmental initiatives are thought to increase cost and/or restrict manufacturing flexibility. The Commodity Management Supplier Program for Total Waste Management (TWM) implemented globally throughout Ford Motor Company facilities aligns environmental, manufacturing, and corporate citizenship objectives by encouraging supplier-driven continuous process improvement. By creating appropriate TWM contractor waste minimization incentives and utilizing contractor core-business knowledge, the desired effects of reducing total costs while institutionalizing and advancing pollution prevention successes are ultimately realized.
Technical Paper

Scratch Resistance of Automotive Plastic Coatings

1998-02-23
980973
The scratch resistance of automotive plastic coatings has been studied extensively over the past few years. Most testing methodology to correlate damage of the coating to field conditions has been in the form of small particulate wearing, e.g., alumina oxide abrasive, or indentation resistance of the coating to an external probe, e.g., a nanoindentation device. The subsequent damage imparted to the coating has generally been analyzed by the amount of coating mass lost in the wear event or through a ratio of optical reflectance of the damaged area to the undamaged surface. In this paper, we attempt to delineate surface damage resistance of several automotive clearcoats through an optical interferometry methodology developed to measure volume and depth of damage incurred with small particle alumina oxide erodents in a simulated wear environment.
X