Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Vehicle’s Front End Profile Influence on Pedestrian Sensing System Using In-House Developed PDI-2 and Child FE Models

Many active safety systems are being developed with the intent of protecting pedestrians namely; pedestrian airbags, active hood, active emergency braking (AEB), etc. Effectiveness of such protection system relies on the efficiency of the sensing systems. The pop-uphood system was developed to help reduce pedestrian head injuries. A pop-up system is expected to make full deployment of the hood before the pedestrian’s head could hit the hood. The system should have the capability to detect most road users ranging from a six year old (6YO) child to a large male. To test the sensing system, an impactor model (PDI-2) was developed. Sensor response varies for vehicles with different front end profile dimensions.
Technical Paper

Effect of Vehicle's Front End Profile on Pedestrian's Lower Extremity Injury Pattern in Real World and Verification by Large Male FE Human Model

Logistic regression analysis for accident cases of NASS-PCDS (National Automotive Sampling System-Pedestrian Crash Data Study) clearly shows that the extent and the degree of pedestrian's lower extremity injury depend on various factors such as the impact speed, the ratio of the pedestrian height to that of the bonnet leading edge (BLE) of the striking vehicle, bumper to knee ratio, bumper lead angle, age of the pedestrian, and posture of the pedestrian at the time of impact. The pedestrian population is divided in 3 groups, equivalent to small-shorter, medium-height and large-taller pedestrian with respect to the “pedestrian to BLE height-ratio” in order to quantify the degree of influence of lower leg injuries in each group. Large adult male finite element model (95th percentile male: 190 cm and 103 kg) was developed by morphing the Japan Automobile Manufacturers Association (JAMA) 50th percentile male.
Technical Paper

Evaluation and Research of Structural Interaction between of two cars in Car to Car Compatibility

Incompatibility between two colliding cars is becoming an important issue in passive safety engineering. Among various phenomena, indicating signs of incompatibility, over-riding and under-riding are likely caused by geometrical incompatibility in vertical direction. The issue of over-riding and under-riding is, therefore, not only a problem for partner-protection but also a possible disadvantage in self-protection. One of the possible solutions of this dual contradictory problem is to have a good structural interaction between the front-ends of two cars. Studies have been done to develop a test protocol for assessment of this interaction and to define criteria for evaluation but mostly in terms of aggressivity, which is a term describing incompatibility of a relatively stronger car. In this study, it was hypothesized that homogeneous front-end could be a possible better solution for good structural interaction.
Technical Paper

Evaluation and Research of Vehicle Body Stiffness and Strength for Car to Car Compatibility

In a CTC (car to car) crash, interaction between two vehicles is quite important. Interaction is primarily described by the contact area between two vehicles but interaction force (impact force) is also important for the entire crash phenomenon. In a frontal crash, impact force is resisted by the body structures, engine block, and tires. The resultant share of energy absorption, as well as the magnitude of body deformation, is greatly affected by the force profile. It is desired, therefore, to evaluate those factors of vehicle bodies in order to achieve CTC compatibility. There are some technical obstacles, however, in measuring those factors in testing. Impact force, for instance, cannot be measured directly in a CTC crash test unless load cells are installed in body frames. It is also difficult to analyze body deformation in a CTC crash test because both vehicles are moving.