Refine Your Search

Topic

Search Results

Technical Paper

Numerical Investigation of the Effect of Piston Geometry on the Performance of a Ducted Fuel Injection Engine

2024-07-02
2024-01-3024
Ducted Fuel Injection (DFI) engines have emerged as a promising technology in the pursuit of a clean and efficient combustion process. This article aims at elucidating the effect of piston geometry on the engine performance and emissions of a metal DFI engine. Three different types of pistons were investigated and the main piston design features including the piston bowl diameter, piston bowl slope angle, duct angle and the injection nozzle position were examined. To achieve the target, computational fluid dynamics (CFD) simulations were conducted coupled to a reduced chemical kinetics mechanism. Extensive validations were performed against the measured data from a conventional diesel engine. To calibrate the soot model, genetic algorithm and machine learning methods were utilized. The simulation results highlight the pivotal role played by piston bowl diameter and fuel injection angle in controlling soot emissions of a DFI engine.
Technical Paper

Computational Assessment of Ammonia as a Fuel for Light-Duty SI Engines

2023-08-28
2023-24-0013
To understand key practical aspects of ammonia as a fuel for internal combustion engines, three-dimensional computational fluid dynamics (CFD) simulations were performed using CONVERGETM. A light-duty single-cylinder research engine with a geometrical compression ratio of 11.5 and a conventional pentroof combustion chamber was experimentally operated at stoichiometry. The fumigated ammonia was introduced at the intake plenum. Upon model validation, additional sensitivity analysis was performed. The combustion was modeled using a detailed chemistry solver (SAGE), and the ammonia oxidation was computed from a 38-specie and 262-reaction chemical reaction mechanism. Three different piston shapes were assessed, and it was found that the near-spark flow field associated with the piston design in combination with the tumble motion promotes faster combustion and yields enhanced engine performance.
Technical Paper

Advanced Finite-Volume Numerics and Source Term Assumptions for Kernel and G-Equation Modelling of Propane/Air Flames

2022-03-29
2022-01-0406
G-Equation models represent propagating flame fronts with an implicit two-dimensional surface representation (level-set). Level-set methods are fast, as transport source terms for the implicit surface can be solved with finite-volume operators on the finite-volume domain, without having to build the actual surface. However, they include approximations whose practical effects are not properly understood. In this study, we improved the numerics of the FRESCO CFD code’s G-Equation solver and developed a new method to simulate kernel growth using signed distance functions and the analytical sphere-mesh overlap. We analyzed their role for simulating propane/air flames, using three well-established constant-volume configurations: a one-dimensional, freely propagating laminar flame; a disc-shaped, constant-volume swirl combustor; and torch-jet flame development through an orifice from a two-chamber device.
Technical Paper

A Simulation Study to Understand the Efficiency Analysis of Multiple Injectors for the Double Compression Expansion Engine (DCEE) Concept

2021-04-06
2021-01-0444
Heavy-duty vehicles face increasing demands of emission regulations. Reduced carbon-dioxide (CO2) emission targets motivate decreased fuel consumption for fossil fuel engines. Increased engine efficiency contributes to lower fuel consumption and can be achieved by lower heat transfer, friction and exhaust losses. The double compression expansion engine (DCEE) concept achieves higher efficiency, as it utilizes a split-cycle approach to increase the in-cylinder pressure and recover the normally wasted exhaust energy. However, the DCEE concept suffers heat losses from the high-pressure approach. This study utilizes up to three injectors to reduce the wall-gas temperature gradient rendering lower convective heat losses. The injector configuration consists of a standard central injector and two side-injectors placed at the rim of the bowl. An increased distance from side-injector to the wall delivered lower heat losses by centralizing hot gases in the combustion chamber.
Technical Paper

Development of a CFD Solver for Primary Diesel Jet Atomization in FOAM-Extend

2019-09-09
2019-24-0128
Ongoing development of a CFD framework for the simulation of primary atomization of a high pressure diesel jet is presented in this work. The numerical model is based on a second order accurate, polyhedral Finite Volume (FV) method implemented in foam-extend-4.1, a community driven fork of the OpenFOAM software. A geometric Volume-of-Fluid (VOF) method isoAdvector is used for interface advection, while the Ghost Fluid Method (GFM) is used to handle the discontinuity of the pressure and the pressure gradient at the interface between the two phases: n-dodecane and air in the combustion chamber. In order to obtain highly resolved interface while minimizing computational time, an Adaptive Grid Refinement (AGR) strategy for arbitrary polyhedral cells is employed in order to refine the parts of the grid near the interface. Dynamic Load Balancing (DLB) is used in order to preserve parallel efficiency during AGR.
Technical Paper

Limitations of Sector Mesh Geometry and Initial Conditions to Model Flow and Mixture Formation in Direct-Injection Diesel Engines

2019-04-02
2019-01-0204
Sector mesh modeling is the dominant computational approach for combustion system design optimization. The aim of this work is to quantify the errors descending from the sector mesh approach through three geometric modeling approaches to an optical diesel engine. A full engine geometry mesh is created, including valves and intake and exhaust ports and runners, and a full-cycle flow simulation is performed until fired TDC. Next, an axisymmetric sector cylinder mesh is initialized with homogeneous bulk in-cylinder initial conditions initialized from the full-cycle simulation. Finally, a 360-degree azimuthal mesh of the cylinder is initialized with flow and thermodynamics fields at IVC mapped from the full engine geometry using a conservative interpolation approach. A study of the in-cylinder flow features until TDC showed that the geometric features on the cylinder head (valve tilt and protrusion into the combustion chamber, valve recesses) have a large impact on flow complexity.
Technical Paper

Evaluating Surface Film Models for Multi-Dimensional Modeling of Spray-Wall Interaction

2019-04-02
2019-01-0209
Surface film formation is an important phenomenon during spray impingement in a combustion chamber. The film that forms on the chamber walls and piston bowl produces soot post-combustion. While some droplets stick to the wall surface, others splash and interact with the gas present inside the combustion chamber. Accurate prediction of both the film thickness and splashed mass is crucial for surface film model development since it leads to a precise estimation of the amount of soot and other exhaust gases formed. This information could guide future studies aimed at a comprehensive understanding of the combustion process and might enable development of engines with reduced emissions. Dynamic structure Large Eddy Simulation (LES) turbulence model implemented for in-cylinder sprays [1] has shown to predict the flow structure of a spray more accurately than the Reynolds-averaged Navier-Stokes turbulence model.
Journal Article

Large-Eddy Simulation of Turbulent Dispersion Effects in Direct Injection Diesel and Gasoline Sprays

2019-04-02
2019-01-0285
In most large-eddy simulation (LES) applications to two-phase engine flows, the liquid-air interactions need to be accounted for as source terms in the respective governing equations. Accurate calculation of these source terms requires the relative velocity “seen” by liquid droplets as they move across the flow, which generally needs to be estimated using a turbulent dispersion model. Turbulent dispersion modeling in LES is very scarce in the literature. In most studies on engine spray flows, sub-grid scale (SGS) models for the turbulent dispersion still follow the same stochastic approach originally proposed for Reynolds-averaged Navier-Stokes (RANS). In this study, an SGS dispersion model is formulated in which the instantaneous gas velocity is decomposed into a deterministic part and a stochastic part. The deterministic part is reconstructed using the approximate deconvolution method (ADM), in which the large-scale flow can be readily calculated.
Technical Paper

Bowl Geometry Effects on Turbulent Flow Structure in a Direct Injection Diesel Engine

2018-09-10
2018-01-1794
Diesel piston bowl geometry can affect turbulent mixing and therefore it impacts heat-release rates, thermal efficiency, and soot emissions. The focus of this work is on the effects of bowl geometry and injection timing on turbulent flow structure. This computational study compares engine behavior with two pistons representing competing approaches to combustion chamber design: a conventional, re-entrant piston bowl and a stepped-lip piston bowl. Three-dimensional computational fluid dynamics (CFD) simulations are performed for a part-load, conventional diesel combustion operating point with a pilot-main injection strategy under non-combusting conditions. Two injection timings are simulated based on experimental findings: an injection timing for which the stepped-lip piston enables significant efficiency and emissions benefits, and an injection timing with diminished benefits compared to the conventional, re-entrant piston.
Technical Paper

Modeling Ignition and Combustion in Spark-Ignition Engines Based on Swept-Volume Method

2018-04-03
2018-01-0188
A swept-volume method of calculating the volume swept by the flame during each time step is developed and used to improve the calculation of fuel reaction rates. The improved reaction rates have been applied to the ignition model and coupled with the level set G-equation combustion model. In the ignition model, a single initial kernel is formed after which the kernel is convected by the gas flow and its growth rate is determined by the flame speed and thermal expansion due to the energy transfer from the electrical circuit. The predicted ignition kernel size was compared with the available experimental data and good agreements were achieved. Once the ignition kernel reaches a size when the fully turbulent flame is developed, the G-equation model is switched on to track the mean turbulent flame front propagation.
Journal Article

Guidelines for Interpreting Soot Luminosity Imaging

2017-03-28
2017-01-0716
One way to develop an understanding of soot formation and oxidation processes that occur during direct injection and combustion in an internal combustion engine is to image the natural luminosity from soot over time. Imaging is possible when there is optical access to the combustion chamber. After the images are acquired, the next challenge is to properly interpret the luminous distributions that have been captured on the images. A major focus of this paper is to provide guidance on interpretation of experimental images of soot luminosity by explaining how radiation from soot is predicted to change as it is transmitted through the combustion chamber and to the imaging. The interpretations are only limited by the scope of the models that have been developed for this purpose. The end-goal of imaging radiation from soot is to estimate the amount of soot that is present.
Technical Paper

Comparison of Linear, Non-Linear and Generalized RNG-Based k-epsilon Models for Turbulent Diesel Engine Flows

2017-03-28
2017-01-0561
In this work, linear, non-linear and a generalized renormalization group (RNG) two-equation RANS turbulence models of the k-epsilon form were compared for the prediction of turbulent compressible flows in diesel engines. The object-oriented, multidimensional parallel code FRESCO, developed at the University of Wisconsin, was used to test the alternative models versus the standard k-epsilon model. Test cases featured the academic backward facing step and the impinging gas jet in a quiescent chamber. Diesel engine flows featured high-pressure spray injection in a constant volume vessel from the Engine Combustion Network (ECN), as well as intake flows in a high-swirl diesel engine. For the engine intake flows, a model of the Sandia National Laboratories 1.9L light-duty single cylinder optical engine was used.
Technical Paper

Effect of Timing and Location of Hotspot on Super Knock during Pre-ignition

2017-03-28
2017-01-0686
Pre-ignition in SI engine is a critical issue that needs addressing as it may lead to super knock event. It is widely accepted that pre-ignition event emanates from hot spot(s) that can be anywhere inside the combustion chamber. The location and timing of hotspot is expected to influence the knock intensity from a pre-ignition event. In this study, we study the effect of location and timing of hot spot inside the combustion chamber using numerical simulations. The simulation is performed using a three-dimensional computational fluid dynamics (CFD) code, CONVERGE™. We simulate 3-D engine geometry coupled with chemistry, turbulence and moving structures (valves, piston). G-equation model for flame tracking coupled with multi-zone model is utilized to capture auto-ignition (knock) and solve gas phase kinetics. A parametric study on the effect of hot spot timing and location inside the combustion chamber is performed.
Journal Article

An Efficient Level-Set Flame Propagation Model for Hybrid Unstructured Grids Using the G-Equation

2016-04-05
2016-01-0582
Computational fluid dynamics of gas-fueled large-bore spark ignition engines with pre-chamber ignition can speed up the design process of these engines provided that 1) the reliability of the results is not affected by poor meshing and 2) the time cost of the meshing process does not negatively compensate for the advantages of running a computer simulation. In this work a flame propagation model that runs with arbitrary hybrid meshes was developed and coupled with the KIVA4-MHI CFD solver, in order to address these aims. The solver follows the G-Equation level-set method for turbulent flame propagation by Tan and Reitz, and employs improved numerics to handle meshes featuring different cell types such as hexahedra, tetrahedra, square pyramids and triangular prisms. Detailed reaction kinetics from the SpeedCHEM solver are used to compute the non-equilibrium composition evolution downstream and upstream of the flame surface, where chemical equilibrium is instead assumed.
Journal Article

Effects of Numerical Schemes on Large Eddy Simulation of Turbulent Planar Gas Jet and Diesel Spray

2016-04-05
2016-01-0866
Three time integration schemes and four finite volume interpolation schemes for the convection term in momentum equation were tested under turbulent planar gas jet and Sandia non-reacting vaporizing Spray-H cases. The three time integration schemes are the first-order Euler implicit scheme, the second-order backward scheme, and the second-order Crank-Nicolson scheme. The four spatial interpolation schemes are cubic central, linear central, upwind, and vanLeer schemes. Velocity magnitude contour, centerline and radial mean velocity and Reynolds stress profiles for the planar turbulent gas jet case, and fuel vapor contour and liquid and vapor penetrations for the Diesel spray case predicted by the different numerical schemes were compared. The sensitivity of the numerical schemes to mesh resolution was also investigated. The non-viscosity based dynamic structure subgrid model was used. The numerical tool used in this study was OpenFOAM.
Technical Paper

Modeling of Heating and Evaporation of FACE I Gasoline Fuel and its Surrogates

2016-04-05
2016-01-0878
The US Department of Energy has formulated different gasoline fuels called ''Fuels for Advanced Combustion Engines (FACE)'' to standardize their compositions. FACE I is a low octane number gasoline fuel with research octane number (RON) of approximately 70. The detailed hydrocarbon analysis (DHA) of FACE I shows that it contains 33 components. This large number of components cannot be handled in fuel spray simulation where thousands of droplets are directly injected in combustion chamber. These droplets are to be heated, broken-up, collided and evaporated simultaneously. Heating and evaporation of single droplet FACE I fuel was investigated. The heating and evaporation model accounts for the effects of finite thermal conductivity, finite liquid diffusivity and recirculation inside the droplet, referred to as the effective thermal conductivity/effective diffusivity (ETC/ED) model.
Journal Article

Multi-Dimensional-Modeling-Based Development of a Novel 2-Zone Combustion Chamber Applied to Reactivity Controlled Compression Ignition Combustion

2015-04-14
2015-01-0840
A novel 2-zone combustion chamber concept (patent pending) was developed using multi-dimensional modeling. At minimum volume, an axial projection in the piston divides the volume into distinct zones joined by a communication channel. The projection provides a means to control the mixture formation and combustion phasing within each zone. The novel combustion system was applied to reactivity controlled compression ignition (RCCI) combustion in both light-duty and heavy-duty diesel engines. Results from the study of an 8.8 bar BMEP, 2600 RPM operating condition are presented for the light-duty engine. The results from the heavy-duty engine are at an 18.1 bar BMEP, 1200 RPM operating condition. The effect of several major design features were investigated including the volume split between the inner and outer combustion chamber volumes, the clearance (squish) height, and the top ring land (crevice) volume.
Journal Article

A Zero-Dimensional Phenomenological Model for RCCI Combustion Using Reaction Kinetics

2014-04-01
2014-01-1074
Homogeneous low temperature combustion is believed to be a promising approach to resolve the conflict of goals between high efficiency and low exhaust emissions. Disadvantageously for this kind of combustion, the whole process depends on chemical kinetics and thus is hard to control. Reactivity controlled combustion can help to overcome this difficulty. In the so-called RCCI (reactivity controlled compression ignition) combustion concept a small amount of pilot diesel that is injected directly into the combustion chamber ignites a highly diluted gasoline-air mixture. As the gasoline does not ignite without the diesel, the pilot injection timing and the ratio between diesel and gasoline can be used to control the combustion process. A phenomenological multi-zone model to predict RCCI combustion has been developed and validated against experimental and 3D-CFD data. The model captures the main physics governing ignition and combustion.
Technical Paper

Assessment of the Potential of Proper Orthogonal Decomposition for the Analysis of Combustion CCV and Knock Tendency in a High Performance Engine

2013-09-08
2013-24-0031
The paper reports the application of Proper Orthogonal Decomposition (POD) to LES calculations for the analysis of combustion and knock tendency in a highly downsized turbocharged GDI engine that is currently under production. In order to qualitatively match the cyclic variability of the combustion process, Large-Eddy Simulation (LES) of the closed-valve portion of the cycle is used with cycle-dependent initial conditions from a previous multi-cycle analysis [1, 2, 3]. Detailed chemical modelling of fuel's auto-ignition quality is considered through an ad-hoc implemented look-up table approach, as a trade-off between the need for a reasonable representation of the chemistry and that of limiting the computational cost of the LES simulations. Experimental tests were conducted operating the engine at knock-limited spark advance (KLSA) and the proposed knock model was previously validated for such engine setup [3].
Technical Paper

Three Way Catalyst Modeling with Ammonia and Nitrous Oxide Kinetics for a Lean Burn Spark Ignition Direct Injection (SIDI) Gasoline Engine

2013-04-08
2013-01-1572
A Three-Way Catalyst (TWC) model with global TWC kinetics for lean burn DISI engines were developed and validated. The model incorporates kinetics of hydrocarbons and carbon monoxide oxidations, NOx reduction, water-gas and steam reforming and oxygen storage. Ammonia (NH₃) and new nitrous oxide (N₂O) kinetics were added into the model to study NH₃ and N₂O formation in TWC systems. The model was validated over a wide range of engine operating conditions using various types of experimental data from a lean burn automotive SIDI engine. First, well-controlled time-resolved steady state data were used for calibration and initial model tests. In these steady state operations, the engine was switched between lean and rich conditions for NOx emission control. Then, the model was further validated using a large set of time-averaged steady state data. Temperature dependencies of NH₃ and N₂O kinetics in the TWC model were examined and well captured by the model.
X