Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Response Ratio Development for Lateral Pendulum Impact with Porcine Thorax and Abdomen Surrogate Equivalents

2020-03-31
2019-22-0007
There has been recent progress over the past 10 years in research comparing 6-year-old thoracic and abdominal response of pediatric volunteers, pediatric post mortem human subjects (PMHS), animal surrogates, and 6-year-old ATDs. Although progress has been made to guide scaling laws of adult to pediatric thorax and abdomen data for use in ATD design and development of finite element models, further effort is needed, particularly with respect to lateral impacts. The objective of the current study was to use the impact response data of age equivalent swine from Yaek et al. (2018) to assess the validity of scaling laws used to develop lateral impact response corridors from adult porcine surrogate equivalents (PSE) to the 3-year-old, 6-year-old, and 10-year-old for the thorax and abdominal body regions.
Technical Paper

Side Impact Assessment and Comparison of Appropriate Size and Age Equivalent Porcine Surrogates to Scaled Human Side Impact Response Biofidelity Corridors

2018-11-12
2018-22-0009
Analysis and validation of current scaling relationships and existing response corridors using animal surrogate test data is valuable, and may lead to the development of new or improved scaling relationships. For this reason, lateral pendulum impact testing of appropriate size cadaveric porcine surrogates of human 3-year-old, 6-year-old, 10-year-old, and 50th percentile male age equivalence, were performed at the thorax and abdomen body regions to compare swine test data to already established human lateral impact response corridors scaled from the 50th percentile human adult male to the pediatric level to establish viability of current scaling laws. Appropriate Porcine Surrogate Equivalents PSE for the human 3-year-old, 6-year-old, 10-year-old, and 50th percentile male, based on whole body mass, were established. A series of lateral impact thorax and abdomen pendulum testing was performed based on previously established scaled lateral impact assessment test protocols.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part III: Development of Transfer Functions

2018-04-03
2018-01-1444
An understanding of stiffness characteristics of different body regions, such as thorax, abdomen and pelvis of ES-2re and SID-IIs dummies under controlled laboratory test conditions is essential for development of both compatible performance targets for countermeasures and occupant protection strategies to meet the recently updated FMVSS214, LINCAP and IIHS Dynamic Side Impact Test requirements. The primary purpose of this study is to determine the transfer functions between the ES-2re and SID-IIs dummies for different body regions under identical test conditions using flat rigid wall sled tests. The experimental set-up consists of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and femur/knee impacting a stationary dummy seated on a rigid low friction seat at a pre-determined velocity.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part I: ES-2re

2018-04-03
2018-01-1449
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Journal Article

Finite-Element-Based Transfer Equations: Post-Mortem Human Subjects versus Hybrid III Test Dummy in Frontal Sled Impact

2015-04-14
2015-01-1489
Transfer or response equations are important as they provide relationships between the responses of different surrogates under matched, or nearly identical loading conditions. In the present study, transfer equations for different body regions were developed via mathematical modeling. Specifically, validated finite element models of the age-dependent Ford human body models (FHBM) and the mid-sized male Hybrid III (HIII50) were used to generate a set of matched cases (i.e., 192 frontal sled impact cases involving different restraints, impact speeds, severities, and FHBM age). For each impact, two restraint systems were evaluated: a standard three-point belt with and without a single-stage inflator airbag. Regression analyses were subsequently performed on the resulting FHBM- and HIII50-based responses. This approach was used to develop transfer equations for seven body regions: the head, neck, chest, pelvis, femur, tibia, and foot.
Technical Paper

Biomechanical Considerations for Assessing Interactions of Children and Small Occupants with Inflatable Seat Belts

2013-11-11
2013-22-0004
NHTSA estimates that more than half of the lives saved (168,524) in car crashes between 1960 and 2002 were due to the use of seat belts. Nevertheless, while seat belts are vital to occupant crash protection, safety researchers continue efforts to further enhance the capability of seat belts in reducing injury and fatality risk in automotive crashes. Examples of seat belt design concepts that have been investigated by researchers include inflatable, 4-point, and reverse geometry seat belts. In 2011, Ford Motor Company introduced the first rear seat inflatable seat belts into production vehicles. A series of tests with child and small female-sized Anthropomorphic Test Devices (ATD) and small, elderly female Post Mortem Human Subjects (PMHS) was performed to evaluate interactions of prototype inflatable seat belts with the chest, upper torso, head and neck of children and small occupants, from infants to young adolescents.
Technical Paper

Biomechanical Assessment of a Rear-Seat Inflatable Seatbelt in Frontal Impacts

2011-11-07
2011-22-0008
This study evaluated the biomechanical performance of a rear-seat inflatable seatbelt system and compared it to that of a 3-point seatbelt system, which has a long history of good real-world performance. Frontal-impact sled tests were conducted with Hybrid III anthropomorphic test devices (ATDs) and with post mortem human subjects (PMHS) using both restraint systems and a generic rear-seat configuration. Results from these tests demonstrated: a) reduction in forward head excursion with the inflatable seatbelt system when compared to that of a 3-point seatbelt and; b) a reduction in ATD and PMHS peak chest deflections and the number of PMHS rib fractures with the inflatable seatbelt system and c) a reduction in PMHS cervical-spine injuries, due to the interaction of the chin with the inflated shoulder belt. These results suggest that an inflatable seatbelt system will offer additional benefits to some occupants in the rear seats.
Technical Paper

Biomechanical Considerations for Abdominal Loading by Seat Belt Pretensioners

2010-11-03
2010-22-0016
While seat belts are the most effective safety technology in vehicles today, there are continual efforts in the industry to improve their ability to reduce the risk of injury. In this paper, seat belt pretensioners and current trends towards more powerful systems were reviewed and analyzed. These more powerful systems may be, among other things, systems that develop higher belt forces, systems that remove slack from belt webbing at higher retraction speeds, or both. The analysis started with validation of the Ford Human Body Finite Element Model for use in evaluation of abdominal belt loading by pretensioners. The model was then used to show that those studies, done with lap-only belts, can be used to establish injury metrics for tests done with lap-shoulder belts. Then, previously performed PMHS studies were used to develop AIS 2+ and AIS 3+ injury risk curves for abdominal interaction with seat belts via logistic regression and reliability analysis with interval censoring.
Technical Paper

Biomechanical Response of the Pediatric Abdomen, Part 2: Injuries and Their Correlation with Engineering Parameters

2008-11-03
2008-22-0006
This paper describes the injuries generated during dynamic belt loading to a porcine model of the 6-year-old human abdomen, and correlates injury outcomes with measurable parameters. The test fixture produced transverse, dynamic belt loading on the abdomen of 47 immediately post-mortem juvenile swine at two locations (upper/lower), with penetration magnitudes ranging from 23% – 65% of the undeformed abdominal depth, with and without muscle tensing, and over a belt penetration rate range of 2.9 m/s – 7.8 m/s. All thoracoabdominal injuries were documented in detail and then coded according to the Abbreviated Injury Scale (AIS). Observed injuries ranged from AIS 1 to AIS 4. The injury distribution matched well the pattern of injuries observed in a large sample of children exposed to seatbelt loading in the field, with most of the injuries in the lower abdomen.
Technical Paper

Impact Response and Biomechanical Analysis of the Knee-Thigh-Hip Complex in Frontal Impacts with a Full Human Body Finite Element Model

2008-11-03
2008-22-0019
Changes in vehicle safety design technology and the increasing use of seat-belts and airbag restraint systems have gradually changed the relative proportion of lower extremity injuries. These changes in real world injuries have renewed interest and the need of further investigation into occupant injury mechanisms and biomechanical impact responses of the knee-thigh-hip complex during frontal impacts. This study uses a detailed finite element model of the human body to simulate occupant knee impacts experienced in frontal crashes. The human body model includes detailed anatomical features of the head, neck, shoulder, chest, thoracic and lumbar spine, abdomen, pelvis, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The human body model used in the current study has been previously validated in frontal and side impacts.
Technical Paper

Biomechanical Analysis of Knee Impact in Frontal Collisions through Finite Element Simulations with a Full Human Body Model

2008-06-17
2008-01-1887
This study applies a detailed finite element model of the human body to simulate occupant knee impacts experienced in vehicular frontal crashes. The human body model includes detailed anatomical features of the head, neck, chest, thoracic and lumbar spine, abdomen, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The total human body model used in the current study has been previously validated in frontal and side impacts. Several cadaver knee impact tests representing occupants in a frontal impact condition were simulated using the previously validated human body model. Model impact responses in terms of force-time and acceleration-time histories were compared with test results. In addition, stress distributions of the patella, femur, and pelvis were reported for the simulated test conditions.
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2012-01-1537
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2007-22-0014
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

Thoracic Response of Belted PMHS, the Hybrid III, and the THOR-NT Mid-Sized Male Surrogates in Low-Speed, Frontal Crashes

2006-11-06
2006-22-0009
Injury to the thorax is the predominant cause of fatalities in crash-involved automobile occupants over the age of 65, and many elderly-occupant automobile fatalities occur in crashes below compliance or consumer information test speeds. As the average age of the automotive population increases, thoracic injury prevention in lower severity crashes will play an increasingly important role in automobile safety. This study presents the results of a series of sled tests to investigate the thoracic deformation, kinematic, and injury responses of belted post-mortem human surrogates (PMHS, average age 44 years) and frontal anthropomorphic test devices (ATDs) in low-speed frontal crashes. Nine 29 km/h (three PMHS, three Hybrid III 50th% male ATD, three THOR-NT ATD) and three 38 km/h (one PMHS, two Hybrid III) frontal sled tests were performed to simulate an occupant seated in the right front passenger seat of a mid-sized sedan restrained with a standard (not force-limited) 3-point seatbelt.
Technical Paper

Biomechanics of 4-Point Seat Belt Systems in Farside Impacts

2006-11-06
2006-22-0012
The biomechanical behavior of a harness style 4-point seat belt system in farside impacts was investigated through dummy and post mortem human subject tests. Specifically, this study was conducted to evaluate the effect of the inboard shoulder belt portion of a 4-point seat belt on the risk of vertebral and soft-tissue neck injuries during simulated farside impacts. Two series of sled tests simulating farside impacts were completed with crash dummies of different sizes, masses and designs to determine the forces and moments on the neck associated with loading of the shoulder belt. The tests were also performed to help determine the appropriate dummy to use in further testing. The BioSID and SID-IIs reasonably simulated the expected kinematics response and appeared to be reasonable dummies to use for further testing. Analysis also showed that dummy injury measures were lower than injury assessment reference values used in development of side impact airbags.
Technical Paper

Biomechanical Response of the Pediatric Abdomen, Part 1: Development of an Experimental Model and Quantification of Structural Response to Dynamic Belt Loading

2006-11-06
2006-22-0001
The abdomen is the second most commonly injured region in children using adult seat belts, but engineers are limited in their efforts to design systems that mitigate these injuries since no current pediatric dummy has the capability to quantify injury risk from loading to the abdomen. This paper develops a porcine (sus scrofa domestica) model of the 6-year-old human's abdomen, and then defines the biomechanical response of this abdominal model. First, a detailed abdominal necropsy study was undertaken, which involved collecting a series of anthropometric measurements and organ masses on 25 swine, ranging in age from 14 to 429 days (4-101 kg mass). These were then compared to the corresponding human quantities to identify the best porcine representation of a 6-year-old human's abdomen. This was determined to be a pig of age 77 days, and whole-body mass of 21.4 kg.
Technical Paper

Analysis and Evaluation of the Biofidelity of the Human Body Finite Element Model in Lateral Impact Simulations According to ISO-TR9790 Procedures

2006-11-06
2006-22-0018
The biofidelity of the Ford Motor Company human body finite element (FE) model in side impact simulations was analyzed and evaluated following the procedures outlined in ISO technical report TR9790. This FE model, representing a 50th percentile adult male, was used to simulate the biomechanical impact tests described in ISO-TR9790. These laboratory tests were considered as suitable for assessing the lateral impact biofidelity of the head, neck, shoulder, thorax, abdomen, and pelvis of crash test dummies, subcomponent test devices, and math models that are used to represent a 50th percentile adult male. The simulated impact responses of the head, neck, shoulder, thorax, abdomen, and pelvis of the FE model were compared with the PMHS (Post Mortem Human Subject) data upon which the response requirements for side impact surrogates was based. An overall biofidelity rating of the human body FE model was determined using the ISO-TR9790 rating method.
Technical Paper

Development and Evaluation of a Proposed Neck Shield for the 5th Percentile Hybrid III Female Dummy

2005-11-09
2005-22-0022
Frontal airbag interaction with the head and neck of the Hybrid III family of dummies may involve a nonbiofidelic interaction. Researchers have found that the deploying airbag may become entrapped in the hollow cavity behind the dummy chin. This study evaluated a prototype neck shield design, the Flap Neck Shield, for biofidelic response and the ability to prevent airbag entrapment in the chin/jaw cavity. Neck pendulum calibration tests were conducted for biofidelity evaluation. Static and dynamic airbag deployments were conducted to evaluate neck shield performance. Tests showed that the Flap Neck Shield behaved in a biofidelic manner with neck loads and head motion within established biofidelic limits. The Flap Neck Shield did not alter the neck loads during static or dynamic airbag interactions, but it did consistently prevent the airbag from penetrating the chin/jaw cavity.
Technical Paper

Evaluation of the ES-2re Dummy in Biofidelity, Component, and Full Vehicle Crash Tests

2005-11-09
2005-22-0021
This technical paper presents the results from tests conducted with the ES-2re, a version of the ES-2 side impact dummy that was modified by the National Highway Traffic Safety Administration (NHTSA) to improve its performance in crash tests. Through the series of biofidelity tests conducted on the ES-2re, described in International Standards Organization (ISO) Technical Report (TR)9790 (1999), the OSRP observed a final overall biofidelity ranking of 4.1 for the ES-2re, which corresponds to an ISO classification of “marginal.” The biofidelity of the ES-2re is compared to that of the ES-2 and the WorldSID. Repeatability was also evaluated on the ES-2re based on the biofidelity test data. Additional pendulum tests were performed to assess the response of the dummy in oblique loading conditions, and results indicate that oblique loading from the front leads to significantly reduced rib deflections.
Technical Paper

Side Impact Response Corridors for the Rigid Flat-Wall and Offset-Wall Side Impact Tests of NHTSA Using the ISO Method of Corridor Development

2005-11-09
2005-22-0019
The purpose of this paper is to compare the biofidelity rating schemes of ISO/TR9790 and the NHTSA Bio Rank System. This paper describes the development of new impact response corridors being proposed for ISO/TR9790 from the results of a recent series of side-impact sled tests. The response data were analyzed by methods consistent with ISO/TR9790, including normalization by impulse-momentum analysis and the elimination of subjects that sustained six or more rib fractures. Unlike ISO/TR9790, this paper proposes the elimination of the data from tests in which the timing and the sequence of loading of the individual impact plates were inconsistent compared to other tests conducted with the same impact wall configuration.
X