Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Fundamental Concepts of Turbocharging Modern Engines Current Practices and Trends

2020-06-16
Turbocharging is rapidly becoming an integral part of many internal combustion engine systems. While it has long been a key to diesel engine performance, it is increasingly seen as an enabler in meeting many of the efficiency and performance requirements of modern automotive gasoline engines. This web seminar will discuss the basic concepts of turbocharging and air flow management of four-stroke engines. The course will explore the fundamentals of turbocharging, system design features, performance measures, and matching and selection criteria.
Technical Paper

Combustion Optimization and In-cylinder NOx and PM Reduction by using EGR and Split Injection Technique

2019-11-21
2019-28-2560
Nowadays, the major most challenge in the diesel engine is the oxides of nitrogen (NOx) and particulate matter (PM) trade-off, with minimal reduction in Power and BSFC. Modern day engines also rely on expensive after-treatment devices, which may decrease the performance and increase the BSFC. In this paper, combustion optimization and in-cylinder emission control by introducing the Split injection technique along with EGR is carried out by 1-D (GT-POWER) simulation. Experiments were conducted on a 3.5 kW Single-cylinder naturally aspirated CRDI engine at the different load conditions. The Simulation model incorporates detailed pressure (Burn rate) analysis for different cases and various aspects of ignition delay, premixed and mixing controlled combustion rate, the injection rate affecting oxides of nitrogen and particulate matter.
Technical Paper

Development of high power density diesel engine for constant speed application

2019-11-21
2019-28-2566
Engine up gradation for higher power rating involves challenges that require hardware changes which not only increase cost but also demand higher space. This paper focuses on the up gradation of a 4 cylinder 4.9l CRDi engine from 24.03 kW/L to 30.75 kW/L by adjustment of various parameters to meet both emission and performance targets. Various challenges like higher exhaust temperature, increased peak firing pressure etc. were met using the proper calibration strategy. To meet SFC targets and keep peak firing pressures, exhaust temperatures within desired limits, different operating points for EGR, main injection timing, rail pressure have been optimized. The operating points for optimization were determined by conducting various drive trials on different type of load conditions in test bench. Calibration strategy involved the safe limits of NOx, soot, CO emissions, fuel consumption.pfp, and exhaust temperature.
Technical Paper

Experimental investigations on CO2 recovery from petrol engine exhaust using adsorption technology

2019-11-21
2019-28-2577
Energy policy reviews state that automobiles contribute 25% of the total Carbon-di-oxide (CO2) emission. The current trend in emission control techniques of automobile exhaust is to reduce CO2 emission. We know that CO2 is a greenhouse gas and it leads to global warming. Conversion of CO2 into carbon and oxygen is a difficult and energy consuming process when compared to the catalytic action of catalytic converters on CO, HC and NOX. The best way to reduce it is to capture it from the source, store it and use it for industry applications. To physically capture the CO2 from the engine exhaust, adsorbents like molecular sieves are utilized. When compared to other methods of CO2 separation, adsorption technique consumes less energy and the sieves can be regenerated, reused and recycled once it is completely saturated. In this research work, zeolite X13 was chosen as a molecular sieve to adsorb CO2 from the exhaust.
Technical Paper

Potential for Emission Reduction and Fuel Economy with Micro & Mild HEV

2019-11-21
2019-28-2504
The development of modern combustion engines (spark ignition as well as compression ignition) for vehicles compliant with future oriented emission legislation (BS6, Euro VI, China 6) has introduced several technologies for improvement of both fuel efficiency as well as low emissions combustion strategies. Some of these technologies as there are high pressure multiple injection systems or sophisticated exhaust gas aftertreatment system imply substantial increase in test and calibration time as well as equipment cost. With the introduction of 48V systems for hybridization a cost-efficient enhancement and, partially, an even attractive alternative is now available. An overview will be given on current technologies as well as on implemented or simulated vehicle concepts for light duty gasoline and diesel powertrains.
Technical Paper

Computerized Experimental Investigation on Performance & Exhaust Emission of Twin Cylinder Adiabatic Diesel Engine coated with YSZ

2019-11-21
2019-28-2548
The fuel consumption and performance of the Internal Combustion engine is improved by adopting concepts of an adiabatic engine. An experimental investigation for different load conditions is carried out on a water-cooled, constant-speed, twin-cylinder diesel engine. This research is intended to emphasize energy balance and emission characteristic for standard uncoated base engine and adiabatic engine. The inner walls of diesel engine combustion chamber are thermally insulated by a top coat of Metco 204NS yttria-stabilized zirconia (Y2O3ZrO2) powder (YSZ) of a thickness of 350 mm using plasma spray coating technology. The same combustion chamber is also coated with TBC bond coats of AMDRY 962 Nickle chromium aluminum yttria of thickness of 150 mm. The NiCrAlY powder specially designed to produce coating’s resistance to hot corrosion.
Technical Paper

Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS

2019-11-21
2019-28-2549
Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS Remesan CB, Sanjay Aurora, Vasundhara V Arde, Vishal Kumar, Om Prakash Yadav, Piyush Ranjan Eicher Engines (A unit of TAFE Motors & Tractors Ltd.) Abstract Development trend in diesel engine is to achieve more power from same size of engine. With increase in brake mean effective pressure (BMEP), the peak firing pressure will also increase. The methodology to control the peak firing pressure on higher BMEP is the major challenge. We achieved better SFC with CPCB II emission targets on a constant speed engine. This study involves a systematic approach to optimize combustion parameters with a cost effective and robust inline Fuel Injection System. This paper deals with the strategies applied and experimental results for achieving the power density of 25kW/lit with Inline FIP by keeping lower Peak firing pressure.
Technical Paper

Powertrain topologies for 2 wheelers : From ICE to Electrification

2019-11-21
2019-28-2480
As Battery cost is expected to see a Downward trend, Electrification of Powertrain in general is expected to pick up and 2wheeler Market is foreseen to be the Flag bearer in this race towards Electrification. In this paper, we would like to emphasize on the Journey of 2wheelers from Conventional Internal combustion Engine to Electrified Powertrains which we foresee in the future. Methodology: EV - Analysis of OEM strategies and upcoming trends in connectivity and electrification. Estimation of current market size of 2Wheeler and segmentation based on different personas. Building survey data based personas around ownership patterns for electric 2Wheelers. Mapping consumer decision process for electric 2Wheelers. Analyse the decision influencers and role of influencers in decision making process. Hybrid - Analysis of different hybrid topologies. Feasibility study via simulation and focus group assessments to evaluate the design. PoC will also be tried to validate the concept.
Technical Paper

Approach for CO2 Reduction in India’s Automotive Sector

2019-11-21
2019-28-2388
India has gone through a lot of transformation over the last decade. Today it is the 6th largest and one of the fastest growing economies in the world. Rising income level, increased consumerism, rapid growth in urbanization and digitization have attributed to this change. Government focus on “Make in India” for promoting trade and investment in India have ensured that India emerge as one of the largest growing economies in the world. The automotive industry played a pivotal role in the manufacturing sector to boost economic activities in India. The passenger car market has increased 3 times over the last decade and it has led to increased mobility options for many people across India. However, this has put concerns on the country’s energy security and emission levels. According to IEA’s recent report on global CO2 emission, 32.31 Gt of CO2 emissions were from fuel combustion in 2016, out of which transport sector contributed ~25%.
Technical Paper

Automobile Exhaust Emmision Control- A review

2019-11-21
2019-28-2382
Since the 20th century increase in the number of cars in the major cities is been a point of concern because of the toxic gasses being emitted from the engine of an automobile. These gasses are polluting the atmosphere and degrading the air to breathe. The main gasses responsible for the degradation of air quality are carbon monoxide, hydrocarbon and oxides of nitrogen. There is a necessity to find ways to reduce the pollution emitted into the atmosphere from the automobile. The source of emission is either evaporation from fuel tank or carburetor which is easy to be dealt with or harmful gasses due to improper combustion which is a concern for the environment. The two ways to reduce these emissions are, modification in the engine to minimize the production of harmful gases and to treat the harmful gasses emitted from the engine before blowing it into the atmosphere from the exhaust. Catalysts help to break harmful gasses into smaller compounds that are environment-friendly.
Technical Paper

A Technical Review on Performance and Emissions of Compressed Natural Gas – Diesel Dual Fuel Engine

2019-11-21
2019-28-2390
In view of the depletion of energy and environmental pollution, dual fuel technology has caught the attention of researchers as a viable technology keeping in mind the increased availability of fuels like Compressed Natural Gas (CNG). It is an ecologically friendly technology due to lower PM and smoke emissions and retains the efficiency of diesel combustion. Generally, dual fuel technology has been prevalent for large engines like marine, locomotive and stationary engines. However, its use for automotive engines has been limited in the past due to constraints of the limited supply of alternative fuels. CNG is a practical fuel under dual-fuel mode operation, with varying degree of success. The induction method prevents a premixed natural gas-air mixture, minimizes the volumetric efficiency and results in a loss of power at higher speeds.
Training / Education

Designing On-Board Diagnostics for Light and Medium Duty Emissions Control Systems

2019-11-11
On-board diagnosis of engine and transmission systems has been mandated by government regulation for light and medium vehicles since the 1996 model year. The regulations specify many of the detailed features that on-board diagnostics must exhibit. In addition, the penalties for not meeting the requirements or providing in-field remedies can be very expensive. This course is designed to provide a fundamental understanding of how and why OBD systems function and the technical features that a diagnostic should have in order to ensure compliant and successful implementation.
Technical Paper

Real Time Piston Temperature Measurement Using Telemetry Technique in Internal Combustion Engine

2019-10-11
2019-28-0022
By looking current scenario, engine development lead time was reducing day by day to enter early in the competitive market and to compete as early as possible. During initial engine development phase, it was very important to know how engine operating temperatures were affecting to piston pack and related system. Conventionally temp plug method was used to capture the piston temperature, but it was time consuming, much costly, for every test condition, new temp plug pistons required, if unfortunately, any hot shutdown happened during the test, again full test needs to be restarted with new set of temp plug pistons and many more limitations. So, for Cummins engine we used Telemetry technique to measure the piston temperature ONLINE and in real time. Piston telemetry enables the telemetric transfer of piston data from internal reciprocating and rotating components. The pistons had wireless telemetry to send real time steady state and transient data from within engines.
Technical Paper

Optimization of In-Cylinder Flow and Swirl Generation Analysis for a Naturally Aspirated Diesel Genset Engine for Emission Reduction through Intake Port Design

2019-10-11
2019-28-0024
Engine in-cylinder flow structure governs the combustion process and directly influences emission formation and fuel consumption at the source. In naturally aspirated DI diesel engine, combustion process coupled with low pressure mechanical fuel injection systems set different requirements for inlet port performance. In-cylinder swirl needs to be optimized for efficient combustion to meet emission levels and fuel consumption targets. Thus, intake port design optimization process becomes a vital requirement. In the present paper intake port design optimization is carried out for single cylinder naturally aspirated engine using mechanical fuel injection systems. The objective is to investigate in-cylinder flow field developed by intake port designs, study the effects of geometrical details of various port cross sections on flow velocity and pressure fields and establish a relationship with intake port performance parameters i.e. swirl and flow coefficient.
Technical Paper

Emission and Noise Optimization of CRDe Engine with Pilot Injection Strategies

2019-10-11
2019-28-0019
The combustion strategies play a key role in emission improvisation and noise reduction on diesel engines equipped for higher emission norus. This paper clearly discussed on the selection of various operating points for optimization and employing of proper calibration strategies like pilot strategy, Main injection timing, EGR type and rail pressure variation for best emission and noise output. Various optimization techniques have been implemented in our study. Since the pilot injection quantity as well as timing are varied in our paper, careful matrix formulation is required to determine the best optimum point. Around 340 points were obtained on varying pilot quantity and pilot separation sweep chosen at single engine speed and load for both the pilots. Out of the above points, 5 sensitive points were selected ensuring the sensitivity of the emissions and noise.
Technical Paper

Experimental and Numerical Prediction of the Pressure Drop Reduction of Catalytic Converter under Various Mass Flow Rate of Exhaust Gas for a Naturally Aspirated Diesel Engine

2019-10-11
2019-28-0030
Nowadays, Diesel emission control strategies are stringent across the globe which caused the rise in need of diesel after treat treatment devices that are more reliable and efficient. The optimized design of the catalytic converter aids in the durability of the product as well as the improvement in efficient operation of the Indian driving cycle. By changing the convergent and divergent cone angles of the catalytic converter, the consequential decrease in pressure drop leads to efficient flow of exhaust gases. The purpose of this study is to design, test, and analyse the catalytic converter in order to reduce the pressure drop in the exhaust system of a naturally aspirated diesel engine using both experimental and CFD techniques. In this study, a Diesel Oxidation Catalyst Catalytic Converter is investigated. For numerical analysis, ANSYS Fluent is used.
Technical Paper

Impact of Waste Plastic Oil and Its Blends on Performance Combustion and Emission Characteristics of CRDI Engine

2019-10-11
2019-28-0047
Utilization of diesel is augmented consistently by transportation and industrial sectors which is making its existence obsolete in near future. Tremendous research has been done by many researchers to find an appropriate alternative for diesel fuel, in this scenario abundant acquisition of plastic wastes and their improper retreating techniques has grabbed the attention of researchers to convert them into alternative fuel for IC engines. This experimental investigation aims to study the performance, combustion and emission characteristics of common rail direct injection (CRDI) fuelled with waste plastic oil and diesel blends at different injection strategies and at various loading conditions. From the results it is noticed that slight decline in the thermal efficiency of the engine when operated with waste plastic oil (100%) due to high viscosity and lower heating value. There was a momentous diminishment in NOx emissions for low injection pressures of plastic diesel blend (P30).
Technical Paper

Experimental Investigation on an EGR Based Diesel Engine Fueled with the Blend of Diesel and Plastic Oil and an Antioxidant Additive

2019-10-11
2019-28-0079
Experimental investigations carried out in a diesel engine incorporated with Exhaust gas recirculation (EGR), fuelled with the blend of diesel and plastic oil along with an antioxidant additive (p-Phenylenediamine) are presented in this paper. Plastic oil is produced from waste plastics through the process of pyrolysis which could be a potential substitute to fossil diesel in diesel engine applications. Production of plastic oil provides solution to the global twin problems of plastic waste management and energy crisis. Investigations have been carried out with the test fuel separately, test fuel with the additive, test fuel with incorporation of EGR in the engine and test fuel with additive and EGR incorporation. Test results revealed that blend of diesel and plastic oil exhibited performance and emissions at par with pure diesel, 18% reduction in NO emission through EGR incorporation as compared to without EGR and 15% reduction in NO through use of antioxidant additive.
Technical Paper

Characteristics Investigation on Di Diesel Engine with Nano-Particles as an Additive in Lemon Grass Oil

2019-10-11
2019-28-0081
In this experimental study, combustion, performance & emission characteristics of a single cylinder D.I. diesel engine is analyzed using lemon grass oil and diesel blend B20. The alumina (Al2O3) nano-particles of 10, 20 and 30 parts per million (B20A10, B20A20, B20A30) are assorted with prepared fuel blend through an ultrasonicator which would help to fetch an unvarying suspension of nano-particles over the blend fuel. SEM analysis and X-ray diffraction have been done for the alumina nano-particles to test the size of the particles that are blended to the bio-fuel blends. The chemical reactivity and rate of mixing are better though the characteristics of nano-particles exhibit high exterior area/capacity ratio during combustion that ultimately results in good characteristics of a diesel engine. Among test fuels, B20A20 shows healthier performance both in relationships of efficiency & emissions such as Nitrous oxide (NOx), hydrocarbon (HC), Carbon monoxide (CO), and Smoke.
Technical Paper

Study of NOx Reduction Efficiency in NSR and NSR-SCR Combined Systems

2019-10-11
2019-28-0087
The present study was carried out to analyze the catalytic action of K2O-Al2O3 in NOx Storage and Reduction (NSR) monolith catalyst and Fe2O3-TiO2 in Selective Catalytic Reduction (SCR) monolith catalyst. The core objective of this investigation is to determine the maximum percentage of Oxides of Nitrogen (NOx) reduction in NSR and NSR-SCR combined system with respect to engine exhaust gas temperature and compares the results with the results of the conventional mode of operation. To accomplish this task monolith ceramic bricks were coated with K2O-Al2O3 (NSR) and Fe2O3-TiO2 (SCR) catalyst and were placed in different configurations inside the catalytic chamber. Several trials were attempted to get the optimal operating temperature that has a maximum NOx removal efficiency when successively connecting a single NSR catalyst and the combined NSR-SCR double bed catalyst. Single NSR monolith at 320 °C, showed the best NOx conversion rate of 74%.
X