Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Injury Reduction in Vehicle to Pedestrian Collision using Deployable Pedestrian Protection System in Vehicles

2019-11-21
2019-28-2551
Head injuries are the main source of road fatalities in when a pedestrian is involved in an accident with the vehicle. The frontal part of vehicle such as engine hood, lower-windshield area and A-pillars are the possible location of head impact in such accidents. The head impact with hard points located in these areas result in the fatal head injuries. The effect of impact can be reduced by using the deployable pedestrian protection systems (DPPS) such as hood-lifters and windshield airbag in the vehicle. The study shows how these systems are effective in reducing the fatalities in pedestrian accidents and how to evaluate the performance of these deployable systems.
Technical Paper

NEXT GENERATION POWER DISTRIBUTION UNIT IN WIRING HARNESS

2019-11-21
2019-28-2571
Keywords – Miniaturization, Low Profile (LP) Relays, Low Profile (LP) Fuses, Fuse box, Wiring Harness Research and/or Engineering Questions/Objective With the exponential advancement in technological features of automobile’s EE architecture, designing of power distribution unit becomes complex and challenging. Due to the increase in the number of features, the overall weight of power distribution unit increases and thereby affecting the overall system cost and fuel economy. The scope of this document is to scale down the weight and space of the power distribution unit without compromising with the current performance. Methodology Miniaturization involves replacing the mini fuses and J-case fuses with LP mini and LP J-case fuses respectively. The transition doesn’t involve any tooling modification and hence saves the tooling cost.
Technical Paper

Suspension hard points optimisation

2019-11-21
2019-28-2419
Objective This paper explores the usage of Altair simulation driven optimisation process, Front Suspension hard points of a sedan Car model are optimised for specific target toe curves using MotionView, MotionSolve and HyperStudy This process gives the optimal hard point values to match the target curves without much iterations. Methodology Parametric Multibody model of the front end of sedan is built in MotionView. To Carry out optimisation HyperStudy is used where few of the suspension hard points which affect the toe curves are chosen as design variable. For the chosen Design variables upper and lower bound limits are specified. Ride, Roll and lateral force tests are performed. Optimisation is performed using HyperStudy where it iterates the suspension hard points to match the target toe curves. Each iteration response can be visualized in HyperStudy and can be compared with the target toe curve.
Technical Paper

Optimization of the critical parameters affecting the fuel lid performance

2019-11-21
2019-28-2413
Fuel lid is one of the parts which are mostly operated mechanically by the end user while filling the fuel. Therefore part design should be done in such a manner that it can be operated smoothly without any hassles. The conventional steel fuel filler doors are of two types: Three-piece type fuel filler doors also known as the dog-leg type and two-piece type fuel filler doors also known as the butterfly type. Both types of fuel filler doors have a pin that acts as a rotational hinge axis about which the fuel filler door opens and closes. Depending on the styling and shape of the side body outer, fuel lid type is decided. In the current study, dog-leg type fuel lid is considered. The factors that primarily affect the opening-closing performance are the weight of fuel lid, hinge axis, and the friction at the hinge area. The orientation of the hinge axis is derived from the profile of the side body outer panel. The fuel lid weight and hinge axis are decided in the initial design stage.
Technical Paper

Development of PCX HEV

2019-11-21
2019-28-2454
In the fourth-generation model of the 2018 PCX, the basic structure of frame was reviewed to make it lighter and rigid. Weight reduction was also adapted to its wheels. These enhancements contributed to its increased dynamic performances. The engine performances were enhanced as well, and all these features made it possible to provide a high-quality riding with composure of rider’s mind. In addition, we developed hybrid model PCX HYBRID that uses an ACG starter directly connected to a crankshaft as a drive assist system and realized pleasurable ride feeling with a more direct drive response.
Technical Paper

MASS OPTIMIZED HOOD DESIGN FOR CONFLICTING PERFORMANCES

2019-11-21
2019-28-2546
MASS OPTIMIZED HOOD DESIGN FOR CONFLICTING PERFORMANCES Santosh Swamy, Gulshan Noorsumar, Shivakumar Chidanandappa General Motors Technical Center, India Keywords Hood; Head Injury Criterion (HIC); Stiffness; Shape optimization; Multi-Disciplinary Optimization (MDO) Research and/or Engineering Questions/ Objective The objective of this work is to obtain a light weight hood which has least possible mass, and at the same time meets all contradicting performances of pedpro (pedestrian protection) and structural stiffness disciplines. Passenger vehicles have stringent safety norms from pedpro perspective to meet child and adult head injury criteria (HIC). These pedestrian safety requirements often conflict with structural stiffness performance criteria which pose a challenge for most automotive OEMs. Therefore, there is a growing need for mass optimization and performance balancing to meet both the requirements simultaneously.
Technical Paper

Optimization of vehicle side panel to improve crashworthiness.

2019-11-21
2019-28-2573
The front of a car, though susceptible to the biggest impacts in terms of magnitude, has space and additional reinforcement to incorporate various safety measures. The rear has considerable amount of space to contain a proper crash box. The side of the car, though, doesn’t have this flexibility in design, the main limiting parameter being space. Any intrusion into the passenger cabin can result in serious injury or even death. The objective of this work is to improve the crashworthiness of a vehicle’s side so as to reduce intrusion into the passenger cabin. The work is focused on optimizing the door and B pillar. The optimized side panel is compared with the baseline model as per standard. ANSYS solver is used for the simulation. The optimized design applied to the door and B pillar will significantly improve crashworthiness of the vehicle side panel as a whole.
Technical Paper

A Self-Intelligent Traffic Light Control System based on Traffic Environment using Machine Learning

2019-11-21
2019-28-2459
In this paper, we will detect and track vehicles on a video stream and count those going through a defined line and to ultimately give an idea of what the real-time on street situation is across the road network. Our major objective is to optimize the delay in transit of vehicles in odd hours of the day. It uses YOLO object detection technique to detect objects on each of the video frames And SORT (Simple Online and Realtime Tracking algorithm) to track those objects over different frames. Once the objects are detected and tracked over different frames a simple mathematical calculation is applied to count the intersections between the vehicles previous and current frame positions with a defined line. At present, the traffic control systems in India, lack intelligence and act as an open-loop control system, with no feedback or sensing network. Present technologies use Inductive loops and sensors to detect the number of vehicles passing by.
Technical Paper

Thermal Challenges in Automotive Exhaust System through Heat Shield Insulation

2019-11-21
2019-28-2539
While advanced automotive system assemblies contribute greater value to automotive safety, reliability, emission/noise performance and comfort, they are also generating higher temperatures that can reduce the functionality and reliability of thesystem over time. Thermal management and insulation are extremely important and highly demanding in BSVI, RDE and Non-IC engine operating vehicles. Passenger vehicle and Commercial vehicle exhaust systems are facing multiple challenges such as packaging constraints, weight reduction andthermalmanagement requirements.Frugal engineering is mandatory to develop heat shield in the exhaust system with minimum heat loss. The focus of the paper is to design, develop and validate heat shield products with different variables such as design gap, insulation material, sheet metal thickness and manufacturing processes. 1D and 3D computational simulations are performed with different gaps from 3 mm to 14 mm are considered.
Technical Paper

Sensor Perception and Motion Planning for an Autonomous Material Handling Vehicle.

2019-10-28
2019-01-2611
The ground mobile robotics study is structured on the two pivotal members namely Sensor perception and Motion planning. Sensor perception or Exteroception comprises the ability of measurement of the layout of environment relative to vehicle’s frame of reference which is a necessity for the implementation of safe navigation towards the goal destination in an unstructured environment. Environment scanning has played a significant role in mobile robots application to investigate the unexplored environment in the sector of defence while transporting and handling material in warehouse and hospitals. Motion Planning is a conjunction of analysing the sensor’s information about the local frame and global map while being able to plan the route from starting point to the target destination. In this paper, a 3600 2-D LiDAR is used to capture the spatial information of the surrounding, the scanning results are presented in a local and global map.
Technical Paper

Numerical Study of Effect of Material and Orientation on Strength of Side Door Intrusion Beam

2019-10-11
2019-28-0039
Nowadays more and more people are concerned about the safety rating of their vehicle. The safety rating depends on the ability of the car to minimize the injury to the occupants post-crash. Crashworthiness of the vehicle is determined by carrying out various tests such as static and dynamic tests. Side crashes are one of the leading causes of fatal injury following front crashes. Side door strength is dependent on the door components such as latch and striker, hinge, door beam etc. Lateral stiffness is contributed significantly by the side door beam in the door structure. The side door beam limits the side intrusion into passenger compartment. This paper emphasizes the effect of intrusion beam materials and orientation in the side door strength with a numerical approach using ANSYS tool. These factors affect the strength and weight of the door. The simulation study with respect to door design is cost-effective and time-saving.
Technical Paper

Design and Analysis of Natural Fibre Reinforced Epoxy Composites for Automobile Hood

2019-10-11
2019-28-0086
The need for eco-friendly materials is recently increasing in the automobile and aerospace sectors. Material selection for automobile components is influenced by various factors such as cost, weight and strength. Natural fibers offers various advantages over conventional materials such as environmental friendly, easily available, recyclable and higher specific strength. Among the natural fibers Sisal and Kenaf fibers are selected for present study due to their good mechanical properties and availability. Kenaf fibers have great potential to be used as construction and automotive materials due to their long fibers which are derived from the bast. Sisal fibers do not absorb moisture and posses good impact, sound absorbing properties and high fire resistance properties. Epoxy LY556 is selected as matrix material to bind the combination of these two natural fibers due to its high temperature resistance and adherence to reinforcements.
Technical Paper

Design Optimization of Trunk Lid Torsion Bar Type Trunk Lid Pop Up Mechanism

2019-10-11
2019-28-0111
Trunk lid can be opened using hydraulic/pneumatic balancers, coil springs, torsion bars or combination of the above. Trunk Lid Opening Mechanism specific to Trunk Lid Torsion Bar (TLTB) is being discussed in the paper. After de-latching, trunk lid should open smoothly and stop at such a height that it is visible from driver seat. The system consists of a four bar linkage mechanism, in which the fixed link is formed by BIW Bracket. Connecting link, Trunk lid Hinge Arm and Torsion bar form the other three links. Hinge has its one end attached to trunk lid and the other end to BIW bracket. Torsion bar transfers torque to Trunk lid hinge through the connecting link. Major challenges in designing TLTB mechanism are part tolerances, C.G position and Weight variations in individual parts, Torsion bar Raw Material variation, uncertain friction in the system etc.
Technical Paper

Mathematical Modelling of Door Shut-line Definition in CATIA

2019-10-11
2019-28-0107
Door shut-line definition is the first vital step in car body door engineering and depends on the hinge position, hinge shape, manufacturing capabilities and other parameters. In the design process, once the hinge axis definition is finalized door shut-line is defined which should satisfy two major requirements. The requirements are clearance between the door outer surface with its surrounding components (like hinges, fender, other door etc.) and assembly feasibility. The above conditions must be checked on different locations of the door as well as w.r.t different openings of the door. The paper presents a mathematical model to determine the door shut-line position with great computational efficiency. This method propounds closure engineer with parameters to define the shut-line rather than cumbersome manual iterative process. Instead of following an iterative approach to determine a limit for the shut-line, paper presents a mathematical formulation with an implicit equation.
Technical Paper

Design of Lightweight composites for Vehicle Front end energy management of Bumper Beam

2019-10-11
2019-28-0085
Application of advance composites in place of the various conventional materials such as steel can give significant weight and performance advantages. The application of composites is now finding it’s way in the automotive industry due to the growing requirement of the lightweight solutions and high strength to weight ratio. However, their low mechanical properties have limited their application in automotive structural components. The study presented here is focused on the explicit dynamic analysis of a bumper beam and advance composites are used for the study. Different configurations and designs of the bumper are considered to be able to make a comparative study of the stress and deformation levels. The analysis was done in coherence to the Euro NCAP tests and the offset frontal impact analysis was done. The boundary conditions were aligned with the real time impact conditions for proper prediction of the results.
Technical Paper

Amelioration of modular mobility by adopting split cell solar panel cleaning and cooling therof

2019-10-11
2019-28-0078
In photovoltaic system the efficiency of solar cells is determined in combination with latitude and climate. The electricity generation in photovoltaic cell is more in the morning time than in the afternoon time. This is due to the fact that an increase in solar cell temperature leads to a decrease in efficiency of the solar panel. This work aims to provide necessary cooling to the solar panel for favourable output during noon time. Normally electrical modular vehicles use non-split cell solar panels. In order to increase the efficiency, we are using split cell solar panel as it increases voltage by halving the size of the silicon chips. Thus, halving the cells results in increasing efficiency and lowering the operation temperature. The solar panel should be maintained at a particular temperature by adopting sprinkling of water method in solar panel for hybrid vehicles.
Technical Paper

Assessment of tribo meter study of 20MnCr5 alloy steel under case hardened and shot peened condition

2019-10-11
2019-28-0098
This research is constrained to study the strength and wear resistance of 20MnCr5 (SAE 5120) alloy steel under monolithic, case hardened and case hardened with shot peening processing condition. Improve the hardness of the material by enhancing the core and surface strength of case hardened with shot peened sample. The principle goal of this proposed work is to conduct the tribo meter test for the three test samples by differing the load of 5, 10, 15 and 20N and sliding speed of 290,580,870 rpm respectively. The impact on tribo meter process parameters on wear rate and co-efficient of friction be calculated and recorded for this study. Less wear rate and nominal co-efficient of friction was observed for case hardened with shot peened sample. Load and sliding distance increases wear rate decreases and co-efficient of friction increases for all the tested samples due to oxide layer formation.
Technical Paper

Design Considerations and Analysis of Electric Microcar for Cities

2019-10-11
2019-28-0161
Increasing concerns about environmental issues, such as global warming and pollutant emissions have made increase in energy efficiency and emission reduction a primary concern for automobiles. In addition, the compounding effects of adding personal vehicles, increasing density of road traffic and intensifying parking difficulties are indirectly promoting proliferation of small-size vehicles in large cities. Hence, there is a need to develop a microcar with zero emission. Thus, electric microcar is probably the simplest, green and energy efficient vehicle that relatively affordable and easily manoeuvrable in cities. However, a careful analysis is required in order to properly evaluate the propulsion system component sizing, vehicle dimension, performance and weight. This paper mainly focuses on design options and modelling of electric microcar using hub motors followed by analysis.
Technical Paper

Modeling tracked vehicle to determine undercarriage performance

2019-10-11
2019-28-0116
In tracked vehicles, the undercarriage frame components such as track shoes, sprocket, idler, rollers and their configuration plays an important role while transferring the loads from the ground to the main frame. In order to understand the loads coming on the upper frame, it is important to model the undercarriage components. This paper presents the methodology for modeling undercarriage tracked frame dynamics. A 3D model of tracked vehicle was developed using commercial available Multi-Body Dynamics tool and validated against test results. The contact parameters between ground and track shoes was determined by varying their values within a defined range based on empirical data available. The undercarriage performance was measured by determining the power required by the hydrostatic drivetrain motor. The contact friction between the sprocket and the track shoe is important to properly transfer the motion from the sprocket to track chain.
Technical Paper

Performance Assessment of Pyramidal Lattice Core Sandwich Engine Hood For Pedestrian Safety

2019-10-11
2019-28-0089
Usage of car increases every year, the accidents are mainly caused due to the carelessness of pedestrian or driver. Pedestrian accidents results in head trauma or death. It is necessary to manufacture the hood with the material which will absorb impact energy rather than transmitting it to head of the pedestrian. Safety devices such as airbags, energy absorbing steering columns, seat belts which were successfully designed and installed in the automobiles but this will reduce the damage to the persons sitting inside the car. There were no safety devices for pedestrians. GFRP pyramidal lattice core structures are used in automobiles which is used for good energy absorption. Glass fibre reinforced polymer are used for light weight, high strength. In this work, we have analysed GFRP pyramidal lattice core sandwich engine hood in ANSYS workbench under impact loading. For the finite element modelling the materials properties are taken from the previous literature.
X