Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

FEA Beyond Basics Thermal Analysis

2019-12-16
Finite Element Analysis (FEA) is a powerful and well recognized tool used in the analysis of heat transfer problems. However, FEA can only analyze solid bodies and, by necessity thermal analysis with FEA is limited to conductive heat transfer. The other two types of heat transfer: convection and radiation must by approximated by boundary conditions. Modeling all three mechanisms of heat transfer without arbitrary assumption requires a combined use of FEA and Computational Fluid Dynamics (CFD).
Technical Paper

To establish the correlation in between Computer Aided Engineering & physical testing of automotive parts returnable case (Stacktainer).

2019-11-21
2019-28-2569
Automotive returnable cases (Stacktainers) are being used to transport the automotive parts through surface & seaways. No automotive manufacturer wants to spend money on woods, paper & cardboard again and again, it`s better to pay once for robust & reusable cases. these provide better protection to parts from its manufacturing to assembly line of vehicle. While transporting, any kind of crack or failure of returnable cases may lead to loss of money, human & time. To ensure the safety, these pallets have to be validated for vibrations coming from surface irregularities, sea waves & load due to stacking of cases one above other. The objective of this study is to establish a correlation in between the physical testing & simulation in Computer added Engineering (CAE) of automotive returnable case (Stacktainers). There are different types of tests considered to validate the returnable case, rough road evaluation, Multi-axial Vibration & strength evaluation.
Technical Paper

NEXT GENERATION POWER DISTRIBUTION UNIT IN WIRING HARNESS

2019-11-21
2019-28-2571
Keywords – Miniaturization, Low Profile (LP) Relays, Low Profile (LP) Fuses, Fuse box, Wiring Harness Research and/or Engineering Questions/Objective With the exponential advancement in technological features of automobile’s EE architecture, designing of power distribution unit becomes complex and challenging. Due to the increase in the number of features, the overall weight of power distribution unit increases and thereby affecting the overall system cost and fuel economy. The scope of this document is to scale down the weight and space of the power distribution unit without compromising with the current performance. Methodology Miniaturization involves replacing the mini fuses and J-case fuses with LP mini and LP J-case fuses respectively. The transition doesn’t involve any tooling modification and hence saves the tooling cost.
Technical Paper

Optimization of vehicle side panel to improve crashworthiness.

2019-11-21
2019-28-2573
The front of a car, though susceptible to the biggest impacts in terms of magnitude, has space and additional reinforcement to incorporate various safety measures. The rear has considerable amount of space to contain a proper crash box. The side of the car, though, doesn’t have this flexibility in design, the main limiting parameter being space. Any intrusion into the passenger cabin can result in serious injury or even death. The objective of this work is to improve the crashworthiness of a vehicle’s side so as to reduce intrusion into the passenger cabin. The work is focused on optimizing the door and B pillar. The optimized side panel is compared with the baseline model as per standard. ANSYS solver is used for the simulation. The optimized design applied to the door and B pillar will significantly improve crashworthiness of the vehicle side panel as a whole.
Technical Paper

ENHANCE STRENGTH, ACCURACY AND PRECISION OF THE 3D PRINTED ASSEMBLY AID GAUGES

2019-11-21
2019-28-2568
ENHANCE STRENGTH, ACCURACY AND PRECISION OF THE 3D PRINTED ASSEMBLY AID GAUGES Ramesh Kavalur1, Raghavendra Rao 1 1 Body in White, Manufacturing Engineering, General Motors Technical Centre India Pvt. Ltd, India, Keywords - Additive manufacturing, assembly aid gauges, 3D printer. Research Objective - Automotive manufacturing impressively implementing 3D printed jigs and fixtures. Traditional manufacturing of metal assembly aid gauges have limitations such as lead time and causes dent and rough marks on the outer panel of the body. On the other hand, 3D printed jigs and fixtures, demands more time (depends on complexity), have low level of precision and they offer lower strength. It is observed that this occurs because of the inefficient design and manufacturing without understanding the functionality and capability of the 3D printer.
Technical Paper

SELF EXPRESSIVE & SELF HEALING CLOSURES HARDWARES FOR AUTONOMOUS AND SHARED MOBILITY

2019-11-21
2019-28-2525
Shared Mobility is changing the trends in Automotive Industry and its one of the Disruptions. The current vehicle customer usage and life of components are designed majorly for personal vehicle and with factors that comprehend usage of shared vehicles. The usage pattern for customer differ between personal vehicle, shared vehicle & Taxi. In the era of Autonomous and Shared mobility systems, the customer usage and expectation is high. The vehicle needs systems that will control customer interactions (Self-Expressive) & fix the issues on their own (Self-Healing). These two systems / methods will help in increasing customer satisfaction and life of the vehicle. We will be focusing on vehicle Closure hardware & mechanisms and look for opportunities to improve product life and customer experience in ride share and shared mobility vehicles by enabling integrated designs, which will Self-Express & Self-Heal.
Technical Paper

Thermal Management of Li-Ion Battery Pack using GT-SUITE

2019-11-21
2019-28-2500
Objective It is very important to simulate the battery pack being built to understand its behavior when used in applications especially Electric vehicles (EV). All Li-Ion cells are not the same. They need to be characterized before building any battery pack. Hence modeling the battery pack to simulated its performance in the actual conditions becomes important. Methodology To understand the behavior of cells in the on-field environment, they are tested at various conditions like different rates of charging/discharging, various depth of discharge (DOD), ambient temperature, etc. HPPC test is also performed on cells to derive its RC model equivalent model. GT Suite simulation software is used to model the Li-Ion cell using the testing data. Depending on the pack configuration, the modeled cell is connected in the required series and parallel configuration, to study the battery pack with respect to aging, performance and cooling requirements.
Technical Paper

SIMULATION OF SOFTENING AND RUPTURE IN MULTILAYERED FUEL TANK MATERIAL

2019-11-21
2019-28-2557
Research and/or Engineering Questions/Objective Plastic automotive fuel tanks made up of blow molded, multi-layered, high-density polyethylene (HDPE) material can take complex shapes with varying thickness. Accidental drop of fuel tank from a height during handling can lead to development of cracks. Damage can also occur due to an impact during a crash. This can be catastrophic due to flammability of the fuel. The objective of this work is to characterize and develop a failure model for the fuel tank material to simulate damage and enhance predictive capability of CAE for chassis and safety load cases. Methodology Different aspects were considered to develop a characterization and modelling strategy for the HDPE fuel tank. Material properties can be influenced by factors such as, service temperature, rate of deformation, state of stress etc.
Technical Paper

Finite Element Simulation and co-relation with automotive certification testing

2019-11-21
2019-28-2558
Automotive industry needs to exhibit compliance of their product with respect to the Automotive Industry Standards (AIS) at government approved test agencies. CAE (Computer Aided Engineering) plays a vital role in achieving the compliance for the same. With physical testing being more expensive for design iterations, CAE simulations are being considered as vital option. Considering the importance of time for approval, simulation tools are used to understand the physics of testing and failure.
Technical Paper

MASS OPTIMIZED HOOD DESIGN FOR CONFLICTING PERFORMANCES

2019-11-21
2019-28-2546
MASS OPTIMIZED HOOD DESIGN FOR CONFLICTING PERFORMANCES Santosh Swamy, Gulshan Noorsumar, Shivakumar Chidanandappa General Motors Technical Center, India Keywords Hood; Head Injury Criterion (HIC); Stiffness; Shape optimization; Multi-Disciplinary Optimization (MDO) Research and/or Engineering Questions/ Objective The objective of this work is to obtain a light weight hood which has least possible mass, and at the same time meets all contradicting performances of pedpro (pedestrian protection) and structural stiffness disciplines. Passenger vehicles have stringent safety norms from pedpro perspective to meet child and adult head injury criteria (HIC). These pedestrian safety requirements often conflict with structural stiffness performance criteria which pose a challenge for most automotive OEMs. Therefore, there is a growing need for mass optimization and performance balancing to meet both the requirements simultaneously.
Technical Paper

IMPROVE NVH CHARACTERISTICS OF ENGINE OIL PAN BY OPTIMIZATION & LIGHT WEIGHING WITH DEEP LEARNING PROCESS

2019-11-21
2019-28-2552
Recent Years “NVH” is gaining lots of attention as the perception of vehicle quality by a consumer is closely aligned to NVH Characteristics. Demand on Vehicle Light weighting to compliance the environmental norms with powerful engines challenging the “Vehicle NVH”, powertrain induced noise will be continued to be a primary factor for all IC engine vehicles. Component level NVH refinement is necessary to control the overall NVH characteristics of vehicle with lighter Vehicle goal. Current Paper works starts with physical testing the Engine oil pan of the most popular vehicle and build an equivalent simulation model by reverse engineering the design and match similar performance trend in simulation model. After building baseline simulation model, conduct shape, topology, gauge and material optimization to improve weight and performance of Oilpan.
Technical Paper

Injury Reduction in Vehicle to Pedestrian Collision using Deployable Pedestrian Protection System in Vehicles

2019-11-21
2019-28-2551
Head injuries are the main source of road fatalities in when a pedestrian is involved in an accident with the vehicle. The frontal part of vehicle such as engine hood, lower-windshield area and A-pillars are the possible location of head impact in such accidents. The head impact with hard points located in these areas result in the fatal head injuries. The effect of impact can be reduced by using the deployable pedestrian protection systems (DPPS) such as hood-lifters and windshield airbag in the vehicle. The study shows how these systems are effective in reducing the fatalities in pedestrian accidents and how to evaluate the performance of these deployable systems.
Technical Paper

Thermal Challenges in Automotive Exhaust System through Heat Shield Insulation

2019-11-21
2019-28-2539
While advanced automotive system assemblies contribute greater value to automotive safety, reliability, emission/noise performance and comfort, they are also generating higher temperatures that can reduce the functionality and reliability of thesystem over time. Thermal management and insulation are extremely important and highly demanding in BSVI, RDE and Non-IC engine operating vehicles. Passenger vehicle and Commercial vehicle exhaust systems are facing multiple challenges such as packaging constraints, weight reduction andthermalmanagement requirements.Frugal engineering is mandatory to develop heat shield in the exhaust system with minimum heat loss. The focus of the paper is to design, develop and validate heat shield products with different variables such as design gap, insulation material, sheet metal thickness and manufacturing processes. 1D and 3D computational simulations are performed with different gaps from 3 mm to 14 mm are considered.
Technical Paper

Development of Electric Vehicle Controller by using MBD approach

2019-11-21
2019-28-2494
The automobile industry is moving towards electrification of Vehicle to remove the exhaust gas emissions. A project was undertaken to develop Electric Vehicle control system from concept to vehicle trials in less than a year. The complete development cycle of an electronic controller required to be compressed to prepare mule electric vehicle within timeline. Agile methodology has been used for this project instead of waterfall as other control systems were in developing stage; system requirements were changing frequently. This paper presents the electric vehicle control unit development with agile methodology using model based development (MBD) in MATLAB and Simulink environment. The project flow consists of major phases like design of electrical architecture, system requirements specification, selection and setting up the simulation platform, EVCU strategy development, testing on Model in Loop (MIL)/ Hardware in Loop (HIL), vehicle trials.
Technical Paper

Testing Electric Vehicle sub-systems using low cost programmable electronic load

2019-11-21
2019-28-2492
The advancements in Electric Vehicles have introduced many complex sub-systems with demanding and sporadic power needs. For example, the current consumed by electric motor or bank of super-capacitors involve transients making them non-linear loads. Conventional test systems for load analysis mainly involved resistive loads where the rate of rise or fall of current was linear, falling short to accommodate the dynamic behavior of the Electric Vehicle loads. In this paper, we have proposed a low cost; yet effective electronic load that is independent of the battery voltage and can sink the current in any prescribed pattern with respect to time. The simulation results have shown the effectiveness of the hardware with respect to changes in temperature, aging and sudden input fluctuations. The implemented electronic load is interfaced to a desktop application to program the dynamic load behavior and the test duration.
Technical Paper

Numerical Simulation of Battery Cooling Systems in Electric Vehicles

2019-11-21
2019-28-2481
As electric vehicles are working on stored energy in batteries or cells. These units needs to be regulated by cool down or heat up to perform utmost and to ensure individual cell life. Battery cooling systems are installed on vehicles to regulate the temperature around these packs. To ensure maximum performance of these units, numerical simulation is performed. Optimization (includes study of cover design, number of openings, area & position of openings around the cover in which unit is mounted) of flow rate as well as flow path into battery cooling systems is carried out. This study is carried to design a stable unit.
Technical Paper

Powertrain topologies for 2 wheelers : From ICE to Electrification

2019-11-21
2019-28-2480
As Battery cost is expected to see a Downward trend, Electrification of Powertrain in general is expected to pick up and 2wheeler Market is foreseen to be the Flag bearer in this race towards Electrification. In this paper, we would like to emphasize on the Journey of 2wheelers from Conventional Internal combustion Engine to Electrified Powertrains which we foresee in the future. Methodology: EV - Analysis of OEM strategies and upcoming trends in connectivity and electrification. Estimation of current market size of 2Wheeler and segmentation based on different personas. Building survey data based personas around ownership patterns for electric 2Wheelers. Mapping consumer decision process for electric 2Wheelers. Analyse the decision influencers and role of influencers in decision making process. Hybrid - Analysis of different hybrid topologies. Feasibility study via simulation and focus group assessments to evaluate the design. PoC will also be tried to validate the concept.
Technical Paper

Non-linear dynamic Modeling, Simulation and Control of Five-Phase 10/8 Switched Reluctance Motor for Electric Vehicle Application

2019-11-21
2019-28-2473
The SRM is gaining much interest for EVs due to its rare-earth-free characteristic and excellent performance. SRM possess several advantages such as low cost, high efficiency, high power density, fault-tolerant and it can produce extended constant power region, and this makes SRM as viable alternative over conventional PM drives. Objective: The objective of this paper is to establish proof of theoretical concepts related to SRM. The key to achieve an effective SRM modeling is to use a methodology that allow the nonlinearity of its magnetic characteristics to be represented while maximizing the simulation speed. This paper represents how magnetization data obtained from FEA in the form of look up tables is most appropriate way to represent SRM model. In this paper, performance analysis of SRM is done with the help of Open loop and Closed loop MATLAB simulations. These dynamic simulations of SRM will assist in understanding behavior of SRM in various loading and speed conditions.
Technical Paper

Analysis Of GaN Based BLDC Motor Drive For Automotive Application

2019-11-21
2019-28-2471
Objective Automotive sector is rapidly moving towards electric vehicle. BLDC motor is gaining popularity in the field of electric vehicle due to its high torque to weight ratio and simple control. In this paper we will focus on Switching loss characterization of 3 kW GaN based BLDC drive for electric vehicle. To improve efficiency of drive gallium-nitride based power transistor is used instead of Si MOSFET. GaN devices enable the design of inverter at higher frequencies with improved power density and efficiency as compared to traditional Si MOSFETs. Methodology In this paper commercially available GaN devices compared with Si MOSFETs. The power devices, which are selected for the performance comparison, are EPC2022 GaN by EPC, GS61008P GaN by Gan System and SiDR668DP Si MOSFET by Vishay. The Switching losses analytically predicted in MATHCAD tool and then compared with SPICE simulation losses. Double pulse test circuit is used to find out power losses of power transistors.
X