Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Automated Park and Charge: Concept and Energy Demand Calculation

2024-07-02
2024-01-2988
In this paper we are presenting the concept of automated park and charge functions in different use scenarios. The main scenario is automated park and charge in production and the other use scenario is within automated valet parking in parking garages. The automated park and charge in production is developed within the scope of the publicly funded project E-Self. The central aim of the project is the development and integration of automated driving at the end-of-line in the production at Ford Motor Company's manufacturing plant in Cologne. The driving function thereby is mostly based upon automated valet driving with an infrastructure based perception and action planning. Especially for electric vehicles the state of charge of the battery is critical, since energy is needed for all testing and driving operations at end-of-line.
Technical Paper

Additively Manufactured Wheel Suspension System with Integrated Conductions and Optimized Structure

2024-07-02
2024-01-2973
Increasing urbanisation and the growing environmental awareness in society require new and innovative vehicle concepts. In the present work, the design freedoms of additive manufacturing (AM) are used to develop a front axle wheel suspension for a novel modular vehicle concept. The development of the suspension components is based on a new method using industry standard load cases for the strength design of the components. To design the chassis components, first the available installation space is determined and a suitable configuration of the chassis components is defined. Furthermore, numerical methods are used to identify component geometries that are suitable for the force flow. The optimisation setup is selected in a way that allows to integrate information, energy and material-carrying conductors into the suspension arms. The conductors even serve as load-bearing structures because of the matching design of the components.
Technical Paper

Enabling the security of global time in software-defined vehicles (SGTS, MACsec)

2024-07-02
2024-01-2978
The global time that is propagated and synchronized in the vehicle E/E architecture is used in safety-critical, security-critical, and time-critical applications (e.g., driver assistance functions, intrusion detection system, vehicle diagnostics, external device authentication during vehicle diagnostics, vehicle-to-grid and so on). The cybersecurity attacks targeting the global time result in false time, accuracy degradation, and denial of service as stated in IETF RFC 7384. These failures reduce the vehicle availability, robustness, and safety of the road user. IEEE 1588 lists four mechanisms (integrated security mechanism, external security mechanism, architectural solution, and monitoring & management) to secure the global time. AUTOSAR defines the architecture and detailed specifications for the integrated security mechanism "Secured Global Time Synchronization (SGTS)" to secure the global time on automotive networks (CAN, FlexRay, Ethernet).
Technical Paper

Probabilistically Extended Ontologies a basis for systematic testing of ML-based systems

2024-07-02
2024-01-3002
Autonomous driving is a hot topic in the automotive domain, and there is an increasing need to prove its reliability. They use machine learning techniques, which are themselves stochastic techniques based on some kind of statistical inference. The occurrence of incorrect decisions is part of this approach and often not directly related to correctable errors. The quality of the systems is indicated by statistical key figures such as accuracy and precision. Numerous driving tests and simulations in simulators are extensively used to provide evidence. However, the basis of all descriptive statistics is a random selection from a probability space. The difficulty in testing or constructing the training and test data set is that this probability space is usually not well defined. To systematically address this shortcoming, ontologies have been and are being developed to capture the various concepts and properties of the operational design domain.
Training / Education

Failure Mode and Effects Analysis (FMEA)

2024-07-02
This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. This courser will introduce the latest version (2019) of Failure Mode and Effects Analysis (FMEA) Handbook with a focus on DFMEA and PFMEA building. Each column of the FMEA document will also be explained in detail with FMEA examples. The course also includes an introduction to the logic for identifying technical risks and thinking tools for risk mitigation.
Training / Education

Tire Forensics and Markings

2024-06-24
This course introduces basic tire mechanics, including tire construction components based on application type, required sidewall stamping in accordance with DoT/ECE regulations, tread patterns, regulatory and research testing on quality, tire inspections and basic tire failure identification. The course will provide you with information that you can use immediately on-the-job and apply to your own vehicle. This course is practical in nature and supplemented with samples and hands-on activities.
Technical Paper

Fuel Cell Fault Simulation and Detection for On Board Diagnostics using Real-Time Digital Twins

2024-06-12
2024-37-0014
The modern automotive industry is facing challenges of ever-increasing complexity in the electrified powertrain era. On-board diagnostic (OBD) systems must be thoroughly validated and calibrated through many iterations to function effectively and meet the regulation standards. Their development and design process are more complex when prototype hardware is not available and therefore virtual testing is a prominent solution, including Software-in-the-loop (SiL) and Hardware-in-the-loop (HIL) simulations. Virtual prototype testing relying on real-time simulation models is necessary to design and test new era’s OBD systems quickly and in scale. The new fuel cell powertrain involves new and preciously unexplored fail modes. To make the system robust, simulations are required to be carried out to identify different fails.
Technical Paper

Frequency Response Analysis of Fully Trimmed Models using Compressed Reduced Impedance Matrix Methodology

2024-06-12
2024-01-2947
As vibration and noise regulations become more stringent, numerical models need to incorporate more detailed damping treatments. Commercial frameworks, such as Nastran and Actran, allow the representation of trim components as frequency-dependent reduced impedance matrices (RIM) in frequency response analysis of fully trimmed models. The RIM is versatile enough to couple the trims to modal-based or physical components. If physical, the trim components are reduced on the physical coupling degrees of freedom (DOFs) for each connected interface. If modal, the RIMs are projected on the eigenmodes of the connected component. While a model size reduction is achieved compared to the original model, most numerical models possess an extensive number of interfaces DOFs, either modal or physical, leading to large dense RIM which triggers substantial memory and disk storage.
Technical Paper

Efficient engine encapsulation strategy using poroelastic finite element simulation

2024-06-12
2024-01-2957
With the increasing importance of electrified powertrains, electric motors and gear boxes become an important NVH source especially regarding whining noises in the high frequency range. Engine encapsulation noise treatments become often necessary and present some implementation, modeling as well as optimization issues due to complex environments with contact uncertainties, pass-throughs and critical uncovered areas. Relying purely on mass spring systems is often a too massive and relatively unefficient solution whenever the uncovered areas are dominant. Coverage is key and often a combination of hybrid backfoamed porous stiff shells with integral foams for highly complex shapes offer an optimized trade-off between acoustic performance, weight and costs.
Technical Paper

Electric Vehicle Ride & Vibrations Analysis - Full electric vehicle MBD model development for NVH studies

2024-06-12
2024-01-2918
The NVH performance of electric vehicles is a key indicator of vehicle quality, being the structure-borne transmission predominating at low frequencies. Many issues are typically generated by high vibrations, transmitted through different paths, and then radiated acoustically into the cabin. A combined analysis, with both finite-element and multi-body models, enables to predict the interior vehicle noise and vibration earlier in the development phases, to reduce the development time and moreover to optimize components with an increased efficiency level. In the present work, a simulation of a Hyundai electric vehicle has been performed in IDIADA VPG with a full vehicle multibody (MBD) model, followed by vibration/acoustic simulations with a Finite elements model (FEM) in MSC. Nastran to analyze the comfort. Firstly, a full vehicle MBD model has been developed in MSC. ADAMS/Car including representative flexible bodies (generated from FEM part models).
Technical Paper

Transient Numerical Analysis of a Dissipative Expansion Chamber Muffler

2024-06-12
2024-01-2935
Expansion chamber mufflers are commonly applied to reduce noise in HVAC. Dissipative materials, such as microperforated plates (MPPs), are often applied to achieve a more broadband mitigation effect. Such mufflers are typically characterized in the frequency domain, assuming time-harmonic excitation. From a computational point of view, transient analyses are more challenging. A transformation of the equivalent fluid model or impedance boundary conditions into the time domain induces convolution integrals. We apply the recently proposed finite element formulation of a time domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. As most time domain approaches, the formulation relies on approximating the frequency-dependent equivalent fluid parameters by a sum of rational functions composed of real-valued or complex-conjugated poles.
Technical Paper

A critical review of some Panel Contribution Analysis methods used in interior vehicle acoustics

2024-06-12
2024-01-2932
In the acoustic study of the interior noise of a vehicle, whether for structure-borne or air-borne excitations, knowing which areas contribute the most to interior noise and therefore should be treated as a priority, is the main goal of the engineer in charge of the NVH. Very often these areas are numerous, located in different regions of the vehicle and contribute at different frequencies to the overall sound pressure level. This has led to the development of several “Panel Contribution Analysis” (PCA) experimental techniques. For example, a well-known technique is the masking technique, which consists of applying a “maximum package” (i.e., a package with very high sound insulation) to the panels outside of the area whose contribution has to be measured. This technique is pragmatic but rather cumbersome to implement. In addition, it significantly modifies the dynamics and internal acoustics of the vehicle.
Technical Paper

Estimating a Viscous Damping Model for a Vibrating Panel in contact with an Acoustic Trim Enhanced with Particle Dampers.

2024-06-12
2024-01-2917
Dampers (PDs) are passive devices employed in vibration and noise control applications. They consist of a cavity filled with particles that, when fixed to a vibrating structure, dissipate vibrational energy through friction and collisions among the particles. These devices have been extensively documented in the literature and find widespread use in reducing vibrations in structural machinery components subjected to significant dynamic loads during operation. However, their application in reducing vehicle interior sound has received, up to now, relatively little attention. Previous work by the authors has proven the effectiveness of particle dampers in mitigating vibrations in vehicle body panels, achieving a notable reduction in structure-borne noise within the vehicle cabin with an additional weight comparable to or even lower than that of bituminous damping treatments traditionally used for this purpose.
Technical Paper

Gaussian Process Surrogate Models for Vibroacoustic Simulations

2024-06-12
2024-01-2930
In vehicle NVH development, vibroacoustic simulations with Finite Element (FE) models are a common technique. The computational costs for these calculations are steadily rising due to more detailed modelling and higher frequency ranges. At the same time, the need for multiple evaluations of the same model with different input parameters, e.g., for uncertainty quantification, optimization, or robustness investigations, is also increasing. Therefore, it is crucial to reduce the computational costs in these cases. A common technique is to use surrogate models that replace the computationally intensive FE model to perform repeated evaluations. Several different methods in this area are well established, but with the continuous advancements in the field of machine learning, interesting new methods like the Gaussian Process (GP) regression arises as a promising approach.
Technical Paper

Frequency-based substructuring for virtual prediction and uncertainty quantification of thin-walled vehicle seat structures

2024-06-12
2024-01-2946
Finite element simulation (FE) makes it possible to analyze the structural dynamic behavior of vehicle seat structures in early design phases to meet Noise-Vibration-Harshness (NVH) requirements. For this purpose, linear simulations are usually used, which neglect many nonlinear mechanical properties of the real structure. These models are trimmed to fit global vibration behavior based on the complex description of contact or jointed definitions. Targeted design is therefore only possible to a limited extent. The aim of this work is to characterize the entire seat structure and its sub-components in order to identify the main contributors using experimental and simulative data. The Lagrange Multiplier Frequency Based Substructuring (LM-FBS) method is used for this purpose. Therefore, the individual subsystems of seat frame, seat backrest and headrest are characterized under different conditions.
Technical Paper

The irrotational intensity: an efficient tool to understand the vibration energy propagation in complex structures using an FE Model.

2024-06-12
2024-01-2942
Although structural intensity was introduced in the 80's, this concept never found practical applications, neither for numerical nor experimental approaches. Quickly, it has been pointed out that only the irrotational component of the intensity offers an easy interpretation of the dynamic behavior of structures by visualizing the vibration energy flow. This is especially valuable at mid and high frequency where the structure response understanding can be challenging. A new methodolodgy is proposed in order to extract this irrotational intensity field from the Finite Element Model of assembled structures such as Bodies In White. This methodology is hybrid in the sense that it employs two distinct solvers: a dynamic solver to compute the structural dynamic response and a thermal solver to address a diffusion equation analogous to the thermal conduction built from the previous dynamic response.
Technical Paper

Development of a Hybrid-Electric Medium-HD Demonstrator Vehicle with a Pent-Roof SI Natural Gas Engine

2024-06-12
2024-37-0026
In response to global climate change, there is a widespread push to reduce carbon emissions in the transportation sector. For the difficult to decarbonize heavy-duty (HD) vehicle sector, lower carbon intensity fuels can offer a low-cost, near-term solution for CO2 reduction. The use of natural gas can provide such an alternative for HD vehicles while the increasing availability of renewable natural gas affords the opportunity for much deeper reductions in net-CO2 emissions. With this in consideration, the US National Renewable Energy Laboratory launched the Natural Gas Vehicle Research and Development Project to stimulate advancements in technology and availability of natural gas vehicles. As part of this program, Southwest Research Institute developed a hybrid-electric medium-HD vehicle (class 6) to demonstrate a substantial CO2 reduction over the baseline diesel vehicle and ultra-low NOx emissions.
Technical Paper

High-Speed Acoustic Imaging for the Localisation of Impulse-like Sound Emissions from Automotive Components

2024-06-12
2024-01-2959
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras.
Technical Paper

Reduced order model for modal analysis of electric motors considering material and dimensional variations

2024-06-12
2024-01-2945
With the electrification of the automotive industry, electric motors have emerged as pivotal components. A profound understanding of their vibrational behaviour stands as a cornerstone for guaranteeing not only the optimal performance and reliability of vehicles in terms of noise, vibration, and harshness (NVH), but also the overall driving experience. The use of conventional finite element analysis (FEA) techniques for identification of the natural frequencies characteristics of electric motors often imposes significant computational loads, particularly when accurate material and geometrical properties and wider frequency ranges are considered. On the other hand, traditional reduced order vibroacoustic methodologies utilising simplified 2D representations, introduce several assumptions regarding boundary conditions and properties, leading to sacrifices in the accuracy of the results.
Technical Paper

Coupled Boundary Element and Poro-Elastic Element Simulation Approach to Designing Effective Acoustic Encapsulation for Vehicle Components

2024-06-12
2024-01-2956
To meet vehicle interior noise targets and expectations, components including those related to electric vehicles (EVs) can effectively be treated at the source with an encapsulation approach, preventing acoustic and vibration sources from propagating through multiple paths into the vehicle interior. Encapsulation can be especially useful when dealing with tonal noise sources in EVs which are common for electrical components. These treatments involve materials that block noise and vibration at its source but add weight and cost to vehicles – optimization and ensuring the material used is minimized but efficient in reducing noise everywhere where it is applied is critically important. Testing is important to confirm source levels and verify performance of some proposed configurations, but ideal encapsulation treatments are complex and cannot be efficiently achieved by trial-and-error testing.
X