Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

High Capacity Electric A/C Compressor with Integrated Inverter for Hybrid Automotive and Commercial Vehicles

2008-10-07
2008-01-2619
The market growth for electric-hybrid passenger vehicles has been very significant and is expected to reach nearly 25% of all vehicles sold in the US by 2015. Hybrid commercial vehicles are also being developed by several OEM's. This paper discusses the progress of Delphi Thermal Systems in developing an integrated electric compressor drive with high cooling capacity (9 kW+), sufficient for large hybrid SUV's and commercial vehicles such as Class 8 tractors with sleeper. An important driver for use of the electric compressor in the hybrid truck application is the reduction of engine idling time while maintaining comfort in the cab or sleeper. Design details of a compact 5 kW SPM motor, its inverter drive, and issues related to its integration into the compressor housing are described. Test results are given confirming excellent performance.
Technical Paper

Hardware-in-the-Loop Testing for Electrochemical Cells in Hybrid Electric Vehicles

2005-11-01
2005-01-3500
Hardware-in-the-Loop (HWIL) testing is a means for validating and verifying component designs in a system context. Most current HWIL work with electrochemical systems for automotive applications has focused on the pack level, providing valuable feedback to system designers. Further benefits are realized by implementing this concept earlier in the development process; applying test vectors to an individual cell, but attenuating the stimulus and feedback to pack levels. This paper reports on a cell-level HWIL system designed to evaluate electrochemical cells and associated subsystems for advanced hybrid-electric vehicles (HEVs). The architecture of the system is described along with an example of its application applied to a commercially available supercapacitor and a state-of-charge algorithm in an HEV-based configuration.
Technical Paper

Tools for Integration of Analysis and Testing

2003-05-05
2003-01-1606
The automotive vehicle design process has relied for many years on both analytical studies and physical testing. Testing remains to be required due to the inherent complexities of structures and systems and the simplifications made in analytical studies. Simulation test methods, i.e. tests that load components with forces derived from actual operating conditions, have become the accepted standard. Advanced simulation tools like iterative deconvolution methods have been developed to address this need. Analytical techniques, such as multi body simulation have advanced to the degree that it is practical to investigate the dynamic behavior of components and even full vehicles under the influence of operational loads. However, the approach of testing and analysis are quite unique and no seamless bridge between the two exists. This paper demonstrates an integrated approach to combine testing and analysis together in the form of virtual testing.
Technical Paper

GM's New Silverado and Sierra Heavy Duty Truck with the Duramax 6600 Diesel Powertrain

2001-11-12
2001-01-2705
Vehicle requirements are measurable and define the performance of a system and its design constraints. Requirements are developed and translated from the voice of the buying customer, the voice of the government, and the voice of General Motors. Duramax powertrain subsystem requirements are developed from the vehicle requirements. This “flow down” approach optimizes the vehicle as a system. The packaging envelope, common interfaces, and manufacturing impacts were the outcome of the Vehicle Portfolio Development Process. Project execution was a global development process executed by Isuzu Engineers in Japan, Allison Automatic Transmission Engineers in Indianapolis, ZF Manual Transmission Engineers in Detroit, and General Motors Engineers in Detroit.
Technical Paper

The Use of Fatigue Sensitive Critical Locations in Correlation of Vehicle Simulation and In-Service Environments

1988-04-01
880807
A major challenge facing the vehicle simulation test laboratory is correlating (and thereby validating) the simulated “test track” with the In-service environment. This simulation is key to the use of data for durability analysis from the integrated design and testing engineering process. Presented here is an approach to integrating road simulation test and fatigue life analysis that produces needed results for test, design and analysis engineers. The core of the analysis is a fatigue-based “rig-to-road” comparison for an on-highway vehicle using strain-time data acquired at fatigue sensitive locations. The cyclic and fatigue damaging content of the field and simulation profiles are compared quantitatively for purposes of validating the laboratory lest, and to illustrate a method of reporting this validation to design and analysis engineers.
X