Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Development of a Programmable E/H Valve with a Hybrid Control Algorithm

This paper presents a programmable E/H control valve consisting of five individually proportional flow control valves. With a hybrid control algorithm, this valve has programmable valve characteristics, such as adjustable valve deadband and flow control gain, and programmable valve functions, such as different center functions. System analyses and experimental evaluations indicate that this programmable valve is capable of replacing conventional E/H control valves in practical applications.
Technical Paper

Test Vehicle Steering Systems

In order to test and design vehicle systems it is often necessary to develop prototypes. A vehicle's steering system requires a qualitative analysis since it is difficult to quantify and measure subjective quantities such as the “feel” of a steering system. The virtual prototype system (VPS) provides an effective and flexible way of developing and testing the prototypes for qualitative testing. By creating a computer model of a vehicle's steering system using a dynamic simulation package and linking it to a virtual reality vehicle, a designer can drive the virtual prototype vehicle as if he or she were operating an actual vehicle.
Technical Paper

An Interactive Program for the Simulation of Roll Bar Testing

ROPS-TEST is a newly developed, interactive, graphics program that may be used to simulate testing of roll bars. Cross-sections that it currently supports include solid rectangular, rectangular tubing, and circular tubing. ROPS-TEST can be used to simulate testing for crush, rear and side loading. Output from ROPS-TEST includes load-deflection and strain energy-deflection plots. ROPS-TEST does not replace actual testing of prototype roll bars. Rather it serves as a design tool to select the best design options for a particular application prior to actual testing of the prototype roll bars.
Technical Paper

A System for Virtual Reality Simulation of Machinery

Virtual reality is an emerging technology with the potential for many engineering applications including machinery simulation. In this paper the writers describe the hardware and software components of a virtual reality system that simulates machinery. They detail the flow of information that occurs in this system and discuss the functioning of an existing system at the National Center for Supercomputing Applications (NCSA) located at the University of Illinois at Urbana-Champaign. Finally, they describe potential uses of virtual reality in product design, manufacturing, training and marketing.
Technical Paper

A Computer Simulation of Backhoe Type Excavators

This paper describes the simulation model of a backhoe excavator. The model uses a prescribed motion cycle and the objective of the program is to determine the power requirements for each of the cylinders as well as the total engine power requirement. Most computer simulations are developed by expressing the differential equations of motion for the system being studied. The known force inputs to the system are applied and the time response of the system is then obtained by numerically integrating the governing differential equations. This paper on the other hand develops the reverse of this. Utilizing a prescribed geometry and trajectory cycle for a linkage system as the input, the program solves for the types of force inputs that are required to achieve that trajectory. With the time dependence of the trajectory known, the total power required and the power required of each cylinder is also evaluated. A typical excavator linkage is shown in Fig. 1.
Technical Paper

Model to Predict Hydraulic Pump Requirements for an Off-Road Vehicle

This paper describes and discusses a computer model that can be used to predict the hydraulic pump requirements of an excavator necessary to meet the specified productivity levels for a given set of design conditions. The model predicts the hydraulic cylinder flow rates, pressures, and power necessary to sustain a given work cycle. The study compares the results from a simulation of the excavator with actual test data obtained from a test vehicle taken during a typical work cycle.