Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Modeling of Engine Aftertreatment System Cooling for Hybrid Vehicles

2019-04-02
2019-01-0989
Exhaust aftertreatment systems are essential components in modern powertrains, needed to reach the low legislated levels of NOx and soot emissions. A well designed diesel engine exhaust aftertreatment system can have NOx conversion rates above 95%. However, to achieve high conversion the aftertreatment system must be warm. Because of this, large parts of the total NOx emissions come from cold starts where the engine has been turned off long enough for the aftertreatment system to cool down and loose its capacity to reduce NOx. It is therefore important to understand how the aftertreatment cools down when the engine in turned off. Experimental data for a catalyst cool-down process is presented and analyzed. The analysis shows that it is important to capture the spatial distribution of temperatures both in axial and radial directions. The data and analysis are used to design a catalyst thermal model that can be used for model based catalyst temperature monitoring and control.
Technical Paper

Turbocharger Impact on Diesel Electric Powertrain Performance

2018-04-03
2018-01-0965
When electrifying the powertrain, there arises an opportunity to revise the traditional turbocharging trade-off between fuel-economy and transient performance. With the help of electrification, it might be possible to make the trade-off in favor of fuel economy, since transient response can be improved by the electric machine. The paper investigates this trade-off by looking at three turbocharger selections. A conventionally dimensioned turbocharger, an efficiency optimized turbocharger with maintained flow capacity, and an efficiency optimized turbocharger with increased flow capacity. The concepts are evaluated on the following cases: stationary operation, engine tip-in performance, vehicle acceleration performance, and on road fuel economy performance. The investigation is based on a validated mean value engine model of a six cylinder inline CI engine, and on a validated driveline and vehicle model of a heavy-duty truck.
Technical Paper

Development and Usage of a Continuously Differentiable Heavy Duty Diesel Engine Model Equipped with VGT and EGR

2017-03-28
2017-01-0611
Today’s need for fuel efficient vehicles, together with increasing engine component complexity, makes optimal control a valuable tool in the process of finding the most fuel efficient control strategies. To efficiently calculate the solution to optimal control problems a gradient based optimization technique is desirable, making continuously differentiable models preferable. Many existing control-oriented Diesel engine models do not fully posses this property, often due to signal saturations or discrete conditions. This paper offers a continuously differentiable, mean value engine model, of a heavy-duty diesel engine equipped with VGT and EGR, suitable for optimal control purposes. The model is developed from an existing, validated, engine model, but adapted to be continuously differentiable and therefore tailored for usage in an optimal control environment. The changes due to the conversion are quantified and presented.
Technical Paper

Optimal Control of a Diesel-Electric Powertrain During an Up-Shift

2016-04-05
2016-01-1237
To investigate the optimal controls of a diesel-electric powertrain during a torque controlled gearshift, a powertrain model is developed. A validated diesel-electric model is used as the power source and the transmission dynamics are described by different sets of differential equations during torque phase, synchronization phase and inertia phase of the gearshift. Using the developed model, multi-phase optimal control problems are formulated and solved. The trade-off between gearshift duration and driveline oscillations are calculated and efficient gearshift transients for a diesel-electric and pure diesel powertrain are then compared and analyzed.
X