Refine Your Search

Topic

Search Results

Technical Paper

Recursive Least Square Method with Multiple Forgot Factor for Mass Estimation of Heavy Commercial Vehicle

2024-04-09
2024-01-2762
Heavy commercial vehicles have large variations in load and high centroid positions, so it is particularly important to obtain timely and accurate load information during driving. If the load information can be accurately obtained and the braking force of each axle can be distributed on this basis, the braking performance and safety of the entire vehicle can be improved. Heavy commercial vehicle load information is different from passenger vehicles, so it is particularly important to study commercial vehicles engaged in freight and passenger transportation. Presently, numerous research endeavors focus on evaluating the quality of passenger vehicles. However, heavy commercial vehicles exhibit notable distinctions compared to their passenger counterparts. Due to substantial variations in vehicle mass pre and post-loading, coupled with notable suspension deformations, significant changes are observed.
Technical Paper

A Braking Force Distribution Strategy in Integrated Braking System Based on Wear Control and Hitch Force Control

2018-04-03
2018-01-0827
A braking force distribution strategy in integrated braking system composed of the main braking system and the auxiliary braking system based on braking pad wear control and hitch force control under non-emergency braking condition is proposed based on the Electronically Controlled Braking System (EBS) to reduce the difference in braking pad wear between different axles and to decrease hitch force between tractors and trailers. The proposed strategy distributes the braking force based on the desired braking intensity, the degree of the braking pad wear and the limits of certain braking regulations to solve the coupling problems between braking safety, economical efficiency of braking and the comfort of drivers. Computer co-simulations of the proposed strategy are performed.
Technical Paper

Allocation Control of the Distributed Steering System

2016-09-27
2016-01-8034
Distributed steering vehicle uses four steering motors to achieve four wheel independent steering. The steering angle of each wheel can be distributed respectively. The tire cornering characteristics are added to traditional steering model to study the angle allocation control algorithm. Using the constraint relation between tire slip angle, vehicle speed, yaw rate and front steering angle, and connecting with the ideal ackermann steering relationship, steering angle allocation of front wheel independent steering and four wheel independent steering is derived. Then simulated analysis is carried out to demonstrate the efficiency of the algorithm. Improvements in tire wear condition are determined by evaluating the optimization in tire lateral force, and the vehicle stability is determined by vehicle slip angle. The simulation results show that the angle allocation control algorithm has a good effect on improving tire wear condition and enhancing the stability of vehicle.
Technical Paper

Study on Controller of Electronically Controlled Air Suspension for Bus

2016-09-27
2016-01-8033
According to the vehicle’s driving conditions, electronically controlled air suspension (ECAS) systems can actively adjust the height of vehicle body, so that better ride comfort and handling stability will be achieved, which can’t be realized by traditional passive suspension. This paper presents a design and implementation of ECAS controller for vehicle. The controller is aimed at adjusting the static and dynamic height of the vehicle. To exactly track the height of the vehicle and satisfy the control demand of air suspension, a height sensor decoding circuit based on the inductance sensor is designed. Based on it, a new height control algorithm is adopted to achieve rapid and precise control of vehicle height. To verify the function of the designed controller and the proposed height control algorithm, an air spring loading test bench and an ECU-in-loop simulation test bench are respectively established.
Journal Article

Fault-Tolerant Control for 4WID/4WIS Electric Vehicle Based on EKF and SMC

2015-09-29
2015-01-2846
This paper presents a fault-tolerant control (FTC) algorithm for four-wheel independently driven and steered (4WID/4WIS) electric vehicle. The Extended Kalman Filter (EKF) algorithm is utilized in the fault detection (FD) module so as to estimate the in-wheel motor parameters, which could detect parameter variations caused by in-wheel motor fault. A motion controller based on sliding mode control (SMC) is able to compute the generalized forces/moments to follow the desired vehicle motion. By considering the tire adhesive limits, a reconfigurable control allocator optimally distributes the generalized forces/moments among healthy actuators so as to minimize the tire workloads once the actuator fault is detected. An actuator controller calculates the driving torques of the in-wheel motors and steering angles of the wheels in order to finally achieve the distributed tire forces. If one or more in-wheel motors lose efficacy, the FD module diagnoses the actuator failures first.
Technical Paper

Development and Test of Braking Intention Recognition Strategies for Commercial Vehicle

2015-09-29
2015-01-2841
This paper establishes a brake pedal model for braking intention identification, using the structural features of electronic braking system and selecting the proper parameters. A three-dimensional model is built that the input parameters are pedal displacement and pedal displacement change rate, and the output parameter is braking intensity. The relationship between the driver braking operation and braking intention are designed. A hardware-in-the-loop test bench experiment has been taken under several skilled drivers to practice the established the brake pedal model with the operation data during the braking. Thus, it results a model indicating the braking intention by braking operation that means effectively improve the braking comfort and applies to the research of electronic braking system of commercial vehicle.
Technical Paper

Research On Simulation And Control Of Differential Braking Stability Of Tractor Semi-trailer

2015-09-29
2015-01-2842
Heavy vehicles have the characteristics of with high center of gravity position, large weight and volume, wheelbase is too narrow relative to the body height and so on, so that they always prone to rollover. In response to the above heavy security problems of heavy vehicle in running process, this paper mainly analyzes roll stability and yaw stability mechanism of heavy vehicles and studies the influence of vehicle parameters on stability by establishing the vehicle dynamics model. At the same time, this paper focuses on heavy vehicles stability control methods based on simulation and differential braking technology. At last, verify the effect of heavy vehicle stability control by computer simulation. The results shows that self-developed stability control algorithm can control vehicle stability effectively, so that the heavy vehicles instability can be avoided, the vehicle driving safety and braking stability are improved.
Technical Paper

An Active Return-to-Center Control Strategy with Steering Wheel Sensor for Electric Power Steering System

2015-09-29
2015-01-2729
For the vehicles equipped with Electric Power Steering (EPS) system, the friction and damping effect brought by assisted motor and worm gear mechanism influence the return ability and handing stability. In order to eliminate the impacts, it is necessary to add return-to-center control in EPS control strategy. This paper proposes a practical active return-to-center control strategy with steering wheel angle signals based on return state identification. In the strategy, the return state of the steering system is identified quickly according to the two signals steering wheel angle velocity and steering wheel torque. Only under return state, a double closed-loop PID control strategy is carried out to calculate a compensation current to improve the return ability. For validating the proposed strategy, a fine EPS model including BLDC assisted motor is built based on carsim and simulink co-simulation platform.
Technical Paper

Assistance Characteristics and Control Strategy of Electro-Hydraulic Power Steering Systems on Commercial Vehicles

2015-09-29
2015-01-2723
Electro-hydraulic power steering system (EHPS) maintains the advantages of Hydraulic power steering system (HPS) and Electric power steering system (EPS).It is even more superior than this two. In the foreseeable future, this system will have a certain development space. Assistant characters analysis was carried out in this paper. Control strategy based on steering states and feedback control strategy were designed too. Besides, aiming at the emergency steering conditions, steering angular velocity additional controlling strategy was brought out. Under emergency steering conditions, steering angular velocity additional controlling strategy will be applied. Additional steering moment will be calculated to ensure the assistant follow steering rapidly.
Technical Paper

Driving and Steering Coordination Control for 4WID/4WIS Electric Vehicle

2015-09-29
2015-01-2762
This paper presents an integrated chassis controller with multiple hierarchical layers for 4WID/4WIS electric vehicle. The proposed systematic design consists of the following four parts: 1) a reference model is in the driver control layer, which maps the relationship between the driver's inputs and the desired vehicle motion. 2) a sliding mode controller is in the vehicle motion control layer, whose objective is to keep the vehicle following the desired motion commands generated in the driver control layer. 3) By considering the tire adhesive limits, a tire force allocator is in the control allocation layer, which optimally distributes the generalized forces/moments to the four wheels so as to minimize the tire workloads during normal driving. 4) an actuator controller is in the executive layer, which calculates the driving torques of the in-wheel motors and steering angles of the four wheels in order to finally achieve the distributed tire forces.
Technical Paper

An Active Return-to-Middle Control Method without Angle Sensor for EPS

2015-09-29
2015-01-2724
Electric Power Steering System (EPS) can directly provide auxiliary steering torque via a motor. The motor and the reducer in mechanical system will make the friction torque in steering system larger, as a result, the ability of steering returning will be reduced. Therefore, during the design of EPS system control strategy, an extra active return-to-middle control strategy is needed. For the fact that most of the low-end vehicles equipped with EPS system do not have a steering wheel angle sensor, a control strategy has to work without the datum of steering wheel angle. This paper proposes an active return-to-middle control method without steering wheel angle sensor, based on the estimated aligning torque which is converted to the pinion, and expounds how to determine the steering system current motion state in detail. This control method will work just during the turning condition, so it has no effect on the EPS basic assist characteristics.
Journal Article

Based on the Unscented Kalman Filter to Estimate the State of Four-Wheel-Independent Electric Vehicle with X-by-Wire

2015-09-29
2015-01-2731
As a new form of electric vehicle, Four-wheel-independent electric vehicle with X-By-Wire (XBW) inherits all the advantages of in-wheel motor drive electric vehicles. The vehicle steering system is liberated from traditional mechanical steering mechanism and forms an advanced vehicle with all- wheel independent driving, braking and steering. Compared with conventional vehicles, it has more controllable degrees of freedom. The design of the integrated vehicle dynamics control systems helps to achieve the steering, driving and braking coordinated control and improves the vehicle's handling stability. In order to solve the problem of lacking of vehicle state information in the integrated control, some methods are used to estimate the vehicle state of four-wheel-independent electric vehicles with XBW. In order to improve the estimation accuracy, unscented Kalman filter (UKF) is used to estimate the vehicle state variables in this paper.
Journal Article

Multi-Objective Stability Control Algorithm of Heavy Duty Based on EBS

2014-09-30
2014-01-2382
At present, the active safety and stability of heavy vehicles have becoming big concern among the road transportation industry. The purpose of this paper is to specify the research stability and safety of heavy vehicles those set up the accurate and reliable dynamic vehicle reference model and search the method to improve the stability and safety of tractor and semitrailer. A Multi-objective control algorithm was studied to differential braking based on linear quadratic regulator (LQR) control method. Simulation results show that the multi-objective control algorithm can effectively improve the vehicle driving stability and safety.
Journal Article

Identification of Vehicle Mass and Braking Force Distribution Algorithm for Electronic Braking System of Heavy-Duty Vehicle

2014-09-30
2014-01-2387
The active safety and stability of tractor and trailer (heavy-duty vehicle) have becoming big concern among the road transportation industry. The purpose of this paper is to specify the research differential braking force distribution control algorithm to improve braking safety of heavy-duty vehicle. The ideal braking force of each wheel axle should be proportional to vertical load of vehicle that is also related to the road adhesion coefficient, the load and the braking intensity. Reasonable braking force distribution can enhance its braking stability and shorten the braking distance by making full use of the road adhesion condition of each wheel. A braking force distribution algorithm is proposed, in which the objective braking force change with the axle load of vehicle.
Technical Paper

Study on Dynamic Characteristics and Control Methods for Drive-by-Wire Electric Vehicle

2014-09-30
2014-01-2291
A full drive-by-wire electric vehicle, named Urban Future Electric Vehicle (UFEV) is developed, where the four wheels' traction and braking torques, four wheels' steering angles, and four active suspensions (in the future) are controlled independently. It is an ideal platform to realize the optimal vehicle dynamics, the marginal-stability and the energy-efficient control, it is also a platform for studying the advanced chassis control methods and their applications. A centralized control system of hierarchical structure for UFEV is proposed, which consist of Sensor Layer, Identification and Estimation Layer, Objective Control Layer, Forces and Motion Distribution Layer, Executive Layer. In the Identification and Estimation Layer, identification model is established by utilizing neural network algorithms to identify the driver characteristics. Vehicle state estimation and road identification of UFEV based on EKF and Fuzzy Logic Control methods is also conducted in this layer.
Technical Paper

Development and Research on Control Strategy of Advanced Electronic Braking Systems for Commercial Vehicle

2014-09-30
2014-01-2285
Electronic braking system (EBS) of commercial vehicle is developed based on Anti-lock Braking System (ABS), for the purpose of enhancing the braking performance. Based on the previous study, this paper aims at the development and research on the control strategy of advanced electronic braking system for commercial vehicle, which mainly includes braking force distribution and multiple targets control strategy. In the study of braking force distribution control strategy, the mass of vehicle and the axle loads will be calculated dynamically and the braking force of each wheel will be distributed regarding to the axle loads. The braking intention recognition takes the brake pad wear into account when braking uncritically, so it can detect a difference in the pads between the front and the rear axles. The brake assist strategy supports the driver during emergency braking and the braking distance is shortened by the reduction of the braking system response time.
Technical Paper

A Slip-Rate-Based Braking Force Distribution Algorithm for the Electronic Braking System of Combination Vehicle

2014-09-30
2014-01-2385
The paper focus on enhancing the braking safety and improving the braking performance of the tractor/trailer vehicle. A slip-rate-based braking force distribution algorithm is proposed for the electronic braking system of tractor/trailer combination vehicle. The algorithm controls the slip-rates of the tractor's rear wheels and the semi-trailer's wheels changing with the slip-rate of tractor's front wheels, making tractor's front wheels lock up ahead of the tractor's rear wheels and the semi-trailer's wheels. The algorithm protects the combination vehicle from jackknifing and swing, guaranteeing that the combination vehicle has better driving stability and steering capability. The algorithm can be tested by co-simulation with MATLAB/Simulink and TruckSim software both on high adhesion and low adhesion roads.
Technical Paper

The Brake Pads Compensation Control Algorithm for Brake Force Distribution

2014-09-30
2014-01-2287
A brake pad wear control algorithm used under non-emergency braking conditions is proposed to reduce the difference in brake pad wear between the front and rear axles caused by the difference in brakes and braking force. According to the adhesion state of the pad wear, the control algorithm adjusted the braking force distribution ratio of front and rear wheel that balanced adhesion pad wear value. Computer co-simulations of braking with Trucksim and Matlab/Simulink using vehicle models with equal brake pad wear, greater wear on the front axle and greater wear on the rear axle respectively is performed. The computation simulation results show that meet the brake force distribution system regulatory requirements and total vehicle braking force unchanged.
Technical Paper

Development of Simulation Platform and Control Strategy of Electronic Braking System for Commercial Vehicles

2014-09-30
2014-01-2286
Pneumatic Electric Braking System (EBS) is getting widely spread for commercial vehicles. Pneumatic EBS improves the problem of slow response of traditional pneumatic braking system by implementing brake-by-wire. However, the time-delay response and hysteresis of some electro-pneumatic components and some other issues decrease the response and control accuracy of the pneumatic EBS.
Technical Paper

Research on Integrated Chassis Control Strategy for Four-Wheel Independent Control Electric Vehicle

2014-09-30
2014-01-2290
Four-wheel independent control electric vehicle is a new type of x-by-wire EV with four wheels independent steering and four wheels independent drive/brake systems. In order to take full advantage of the vehicle's performance potential, this paper presents a novel integrated chassis control strategy. In the paper, the strategy is designed by the hierarchical control structure and divided into integrated control layer and allocation layer. By this method, the control logical can be modularized and simplified. In the integrated control layer, Model Prediction Control (MPC) is adopted to design the integrated control unit, which belongs to be a kind of local optimization algorithm with feedback correction features. Using this method could avoid the system performance degradation caused by the control model mismatch. The control allocation layer is to optimally distribute the vehicle control forces to the steering/driving/brake actuators on each wheel.
X