Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

CFD Study of an LPG DI SI Engine for Heavy Duty Vehicles

2002-05-06
2002-01-1648
This work aimed to develop an LPG fueled direct injection SI engine, especially in order to improve the exhaust emission quality while maintaining high thermal efficiency comparable to a conventional engine. In-cylinder direct injection engines developed recently worldwide utilizes the stratified charge formation technique at low load, whereas at high load, a close-to-homogeneous charge is formed. Thus, compared to a conventional port injection engine, a significant improvement of fuel consumption and power can be achieved. To implement such a combustion strategy, the stratification of mixture charge is very important, and an understanding of its combustion process is also inevitably necessary. In this work, a numerical simulation was performed using a CFD code (KIVA-3), where the shape of a combustion chamber, swirl intensity, injection timing and duration, etc. were varied and their effects on the mixture formation and combustion process were investigated.
Technical Paper

Performance and Emissions of an LPG Lean-Burn Engine for Heavy Duty Vehicles

1999-05-03
1999-01-1513
Performance and emissions of an LPG lean burn engine for heavy duty vehicles were measured. The piston cavity, swirl ratio, propane - butane fuel ratio, and EGR were varied to investigate their effects on combustion, and thus engine performance. Three piston cavities were tested: a circular flat-bottomed cavity with sloped walls (called the “bathtub” cavity), a round bottomed cavity (called the “dog dish” cavity), and a special high-turbulence cavity (called the “nebula” cavity). Compared to the bathtub and dog dish cavities, the nebula type cavity showed the best performance in terms of cyclic variation and combustion duration. It was capable of maintaining leaner combustion, thus resulting in the lowest NOx emissions. High swirl improved combustion by achieving a high thermal efficiency and low NOx emissions. In general, as the propane composition increased, cyclic variation fell, NOx emissions increased, and thermal efficiency was improved.
Technical Paper

Effects of Particle Size Distribution on Soot Particle Measurement by Transmissive Light Extinction Method

1986-09-01
861234
This paper presents the result of a theoretical study on the effects of particle size distribution on the soot particle measurement method. The principal equations are rear-ranged into a concise form, and a wide variation of size distribution functions are introduced to calculate the effects. It was found that the mean extinction coefficient is very weakly dependent on the shape of size distribution functions and can be approximated to that for the Sauter mean diameter with insignificant error. The volumetric density of soot particles can be obtained by light transmittance measurement on a single wavelength, and this is affected only by the estimated value for the Sauter mean diameter. The error due to the estimation is under 5%. On the other hand, it was found that the light transmittance measurement is insufficient to obtain size distribution or the Sauter mean diameter of soot particles.
Technical Paper

A Dual Fuel Injector for Diesel Engines

1985-09-01
851584
The authors designed and produced a new dual fuel injector that allows two different kinds of fuel to be injected. This injector contains both a throttle type nozzle and a hole type which are located coaxially. The injection timing as well as the fuel quantity can be controlled individually. The running test using two lines of gas oil brought a good reduction of NOx and exhaust smoke. The experiment using gas oil and alcohol also brought a satisfactory reduction of exhaust emission.
X