Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Applied Vehicle Dynamics

2024-09-23
Take notes! Take the wheel! There is no better place to gain an appreciation for vehicle dynamics than from the driver’s seat. Spend three, intense days with a world-renowned vehicle dynamics engineer and SAE Master Instructor, his team of experienced industry engineers, and the BMW-trained professional driving instructors. They will guide you as you work your way through 12 classroom modules learning how and why vehicles go, stop and turn. Each classroom module is immediately followed by an engaging driving exercise on BMW’s private test track.
Technical Paper

Path-Tracking Control for Four-Wheel Steer/Drive Agricultural Special Electric Vehicles Considering Stability

2024-04-25
2024-01-5051
With the modernization of agriculture, the application of unmanned agricultural special vehicles is becoming increasingly widespread, which helps to improve agricultural production efficiency and reduce labor. Vehicle path-tracking control is an important link in achieving intelligent driving of vehicles. This paper designs a controller that combines path tracking with vehicle lateral stability for four-wheel steer/drive agricultural special electric vehicles. First, based on a simplified three-degrees-of-freedom vehicle dynamics model, a model predictive control (MPC) controller is used to calculate the front and rear axle angles. Then, according to the Ackermann steering principle, the four-wheel independent angles are calculated using the front and rear axle angles to achieve tracking of the target trajectory.
Technical Paper

A study on estimation of stuck probability in off-road based on AI

2024-04-09
2024-01-2866
After the COVID-19 pandemic, leisure activities and cultures have undergone significant transformations. Particularly, there has been an increased demand for outdoor camping. Consequently, the need for capabilities that allow vehicles to navigate not only paved roads but also unpaved and rugged terrains has arisen. In this study, we aim to address this demand by utilizing AI to introduce a 'Stuck Probability Estimation Algorithm' for vehicles on off-road. To estimate the 'Stuck Probability' of a vehicle, a mathematical model representing vehicle behavior is essential. The behavior of off-road driving vehicles can be characterized in two main aspects: firstly, the harshness of the terrain (how uneven and rugged it is), and secondly, the extent of wheel slip affecting the vehicle's traction.
Technical Paper

Torque Vectoring for Lane-Changing Control during Steering Failures in Autonomous Commercial Vehicles

2024-04-09
2024-01-2328
Lane changing is an essential action in commercial vehicles to prevent collisions. However, steering system malfunctions significantly escalate the risk of head-on collisions. With the advancement of intelligent chassis control technologies, some autonomous commercial vehicles are now equipped with a four-wheel independent braking system. This article develops a lane-changing control strategy during steering failures using torque vectoring through brake allocation. The boundaries of lane-changing capabilities under different speeds via brake allocation are also investigated, offering valuable insights for driving safety during emergency evasions when the steering system fails. Firstly, a dual-track vehicle dynamics model is established, considering the non-linearity of the tires. A quintic polynomial approach is employed for lane-changing trajectory planning. Secondly, a hierarchical controller is designed.
Technical Paper

Braking Judder Test and Simulation Analysis of Commercial Vehicle

2024-04-09
2024-01-2342
Brake judder affects vehicle safety and comfort, making it a key area of research in brake NVH. Transfer path analysis is effective for analyzing and reducing brake judder. However, current studies mainly focus on passenger cars, with limited investigation into commercial vehicles. The complex chassis structures of commercial vehicles involve multiple transfer paths, resulting in extensive data and testing challenges. This hinders the analysis and suppression of brake judder using transfer path analysis. In this study, we propose a simulation-based method to investigate brake judder transfer paths in commercial vehicles. Firstly, road tests were conducted to investigate the brake judder of commercial vehicles. Time-domain analysis, order characteristics analysis, and transfer function analysis between components were performed.
Technical Paper

Measurement and Modeling for Creep Groan of a Drum Brake in Trucks

2024-04-09
2024-01-2351
An experiment is carried out to measure creep groan of a drum brake located in a trailer axle of a truck. The noise nearby the drum brake and accelerations on brake shoes, axle and trailer frame are collected to analyze the occurring conditions and characteristics of the creep groan. A multi-body dynamics model with 1/4 trailer chassis structures is established for analyzing brake component vibrations that generates the creep groan. In the model, the contact force between brake cam and brake shoes, the contact friction characteristics between brake linings and inner circular surface of brake drum, and the properties of chassis structure are included. Dynamic responses of brake shoes, axle and trailer frame during the braking process are estimated using the established model and the responses are compared with the measured results, which validate the model.
Technical Paper

Commercial Vehicle's Longitudinal Deceleration Precise Control Considering Vehicle-Actuator Dynamic Characteristics

2024-04-09
2024-01-2313
The installation of the Electronic Braking System (EBS) could effectively improve braking response speed, shorten braking distance, and ensure driving safety of commercial vehicles. However, during longitudinal deceleration control process, the commercial vehicles face not only challenges such as large inertia mass and random road gradient resistance of the vehicle layer, but also non-linear characteristics of the EBS actuator layer. In order to solve these problems, this paper proposes a commercial vehicle’s longitudinal deceleration precise control strategy considering vehicle-actuator dynamic characteristics. First, longitudinal dynamics of commercial vehicle is analyzed, and so is the EBS’ non-linear response hysteresis characteristics. Then, we design the dual layer deceleration control strategy. In vehicle layer, the recursive least squares with forgetting factor and Kalman filtering are comprehensively applied to dynamically estimate the vehicle mass and driving road slope.
Technical Paper

Fuzzy Control of Regenerative Braking on Pure Electric Garbage Truck Based on Particle Swarm Optimization

2024-04-09
2024-01-2145
To improve the braking energy recovery rate of pure electric garbage removal vehicles and ensure the braking effect of garbage removal vehicles, a strategy using particle swarm algorithm to optimize the regenerative braking fuzzy control of garbage removal vehicles is proposed. A multi-section front and rear wheel braking force distribution curve is designed considering the braking effect and braking energy recovery. A hierarchical regenerative braking fuzzy control strategy is established based on the braking force and braking intensity required by the vehicle. The first layer is based on the braking force required by the vehicle, based on the front and rear axle braking force distribution plan, and uses fuzzy controllers.
Technical Paper

A methodology for modeling the thermal behavior of an electric axle in real driving cycles

2024-04-09
2024-01-2588
The thermal behavior of the electric axle is an essential indicator which requires certain attention during the development process. Due to the complexity of heat generation mechanism and heat transfer boundary conditions, it is difficult to accurately predict the axle’s temperature, especially in real driving conditions. In this paper, a comprehensive 1D model is developed to simulate its heat transfer process effectively and accurately. The heat transfer model is developed based on the thermal network method, and the electric axle is divided into thermal mass according to its heat transfer characteristics. The heat generation model, which accounts for meshing loss, bearing loss, churning loss, and windage loss, exchanges heat flux and oil temperature information with the heat transfer model to take into account the effect of lubricating oil temperature on power loss.
Technical Paper

Comparison of a Tractor-Semitrailer Rollover Test and HVE Simulations

2024-04-09
2024-01-2487
Building upon prior research, this paper compares computer simulations to a previously conducted rollover crash test of a tractor-semitrailer. The effects of torsional stiffness were elucidated during the correlation of simulations to the rollover test. A commercially available vehicle dynamics and reconstruction software was used for the simulation. Unique aspects of the rollover crash test were modeled in the simulation. A tractor-semitrailer quarter-turn rollover crash test conducted by IMMI was reconstructed using impact and vehicle dynamics models within the simulation software HVE (Human, Vehicle & Environment). The SIMON (SImulation MOdel Non-linear) module and the DyMESH (Dynamic MEchanical SHell) module within HVE were used. During the IMMI test, onboard instrumentation recorded acceleration and roll rate data in six degrees of freedom to characterize both tractor and semitrailer dynamics before and during the rollover event.
Journal Article

Influence of Exhaust Aftertreatment System on Powertrain Vibration Behavior

2024-03-01
Abstract NVH refinement of commercial vehicles is the key attribute for customer acceptance. Engine and road irregularities are the two major factors responsible for the same. During powertrain isolators’ design alone, the mass and inertia of the powertrain are usually considered, but in practical scenarios, a directly coupled subsystem also disturbs the boundary conditions for design. Due to the upgradation in emission norms, the exhaust aftertreatment system of modern automotive vehicles becomes heavier and more complex. This system is further coupled to the powertrain through a flexible joint or fixed joint, which results in the disturbance of the performance of the isolators. Therefore, to address this, the isolators design study is done by considering a multi-body dynamics model of vehicles with 16 DOF and 22 DOF problems, which is capable to simulate static and dynamic real-life events of vehicles.
Technical Paper

Determination of Helical Spring Coefficient of Electric Motor Micro-Truck Vehicle with Independent Suspension on Front Axle

2024-02-12
2024-01-5020
Load-carrying transportation has recently increased due to cargo and online home shopping. As a result, there is a growing demand for vehicles that can pass through narrow streets and carry loads for short distances. Electric vehicles are vital in the automotive industry due to their zero emissions and further promotion through new regulations. This study is focused on determining the spring coefficients of helical springs for a micro-truck vehicle, which will be used for cargo transportation and has a leaf spring with a specific spring coefficient on the rear axle and an independent double wishbone suspension system on the front axle. In addition to being vehicles with low weight values, micro-trucks have the axle capacity required for urban transportation due to their low track width and dimensions. Correctly determining the leaf spring is essential as it will directly affect the loads on the suspension system, wheel life, energy consumption, and comfort level.
Technical Paper

Virtual Prediction of Tractor Front Axle Load and Fatigue Life in Front Loader Application and Validating with Field Measurements

2024-02-06
2024-01-5012
When a specialty tractor is operated by mounting the front loader or backhoes, the loads are distributed proportionately to the front and rear axles. The maximum load and fatigue life were identified as the main parameters in predicting fatigue failure. This paper mainly focuses on predicting front axle loads and fatigue life in front loader applications. To design a new front axle for the loader application, an existing front axle assembly that was designed for orchard, sprayer, and small farm application is selected for study and to extend it for front loader application with minimal design modifications. The major challenge is to estimate the dynamic loads coming to the front axle due to the front loader application and validate it for a different set of load cases as per the design verification plan. Hence a methodology was framed to estimate the actual loads using MBD, validate with field measurements, and verify the new front axle design using those loads in FEA.
Technical Paper

Virtual Design Validation of Innovative High Ground Clearance Tractor Kit

2024-01-16
2024-26-0066
An agricultural tractor is often modified for special farming applications such as horticulture where the standard design is not suitable or accessible. In such cases, farm equipment manufacturers are demanded frugal and cost effect Engineered farming solutions. One such design is the innovative High Ground Clearance Tractor (HGCT) kit offered to increase the Tractor height without damaging the crop during farming operations. In this paper, the author proposes a durability assessment method to evaluate the HGCT kit attachments to meet the durability criteria. Road load data acquisition is done to measure the acceleration and strain levels for various horticulture operations such as tillage, spraying and transportation. Actual operating conditions are simulated with the help of four poster durability setups inside the lab which helps to reduce the field testing for design iterations.
Technical Paper

Effect of Lift Axle Suspension Design on Heavy Commercial Vehicle Handling Performance

2024-01-16
2024-26-0049
The cost of fuels used for automobile are rising in India on account of high global crude oil prices. The fuel cost constitutes major portion of total cost of operation for Heavy commercial vehicles. Hence, the trend is to carry the goods transport through higher payload capacity rigid/straight trucks that offer lower transportation cost per unit of goods transported. This is driving the design of multi-axle heavy trucks that have lift axles. In addition, improved network of highways and road infrastructure is leading to increase in average operating speed of heavy commercial vehicles. It has made increased focus on occupant as well as road safety while designing the heavy trucks. Hence, the analysis of lift axle suspension from the point of view of vehicle handling and stability is essential. There are two basic kinds of lift axle designs used in heavy commercial vehicles: self-steered lift axle having single tire on each side and non-steered lift axle with dual tires on each side.
Technical Paper

A Study on Traction Battery Mounting Arrangements in Different EV Buses

2024-01-16
2024-26-0121
Adaption of EV powertrains in existing vehicle architecture has created many unique challenges in meeting performance, reliability, safety, ease of manufacturing & serviceability at optimum cost. Mounting of large size battery packs in existing vehicle architecture is one of them. Specific energy & the energy density of Lithium ion batteries are very lower compared to Diesel & Petrol, which requires high volume & weight for equivalent energy storage. For movement of many passengers and to ensure sufficient range EV buses typically needs large amount of energy and for storage of same bigger size battery packs are required. These large size batteries directly affect vehicle architecture, seating layout, ease of assembly & serviceability. Moreover the heavy mass of batteries directly influences vehicle dynamics & performance characteristics such as vehicle handling, roll & NVH. The most important consideration in design of EV vehicles in general and buses in specific is safety.
Technical Paper

Simulation Methodology Development for Vibration Test of Bus Body Structure Code AIS-153:2018

2024-01-16
2024-26-0249
A bus is integral part of public transportation in both rural and urban areas. It is also used for scheduled transport, tourism, and school transport. Buses are the common mode of transport all over the world. The growth in economy, the electrification of public transport, demand in shared transport, etc., is leading to a surge in the demand for buses and accelerating the overall growth of the bus industry. With the increased number of buses, the issue of safety of passengers and the crew assumes special importance. The comfort of driver and passenger in the vehicle involves the vibration performance and therefore, the structural integrity of buses is critically important. Bus safety act depicts the safety and comfort of bus operations, management of safety risks, continuous improvement in bus safety management, public confidence in the safety of bus transport, appropriate stakeholder involvement and the existence of a safety culture among bus service providers.
Technical Paper

Study on Contribution of Bogie Suspension Seating Configurations & V-Rod Forces on Life of Heavy Duty Bogie Rear Axle Casing – Analysis Using Road Simulator

2024-01-16
2024-26-0362
The Heavy Duty live rear axles in commercial vehicle helps to transmit the drive to the rear wheels and also carries vehicle load. The rear axle along with wheel assembly consists of axle casing, differential unit, half shafts, wheel hub, brake drum, brake chamber and wheels. It is one of the major safety critical element in any commercial vehicle. Based on the suspension type, rear axle housing also carries V rod & radius rod mountings & Spring Seat /Wear pad / Rubber Bolster (in case of bogie suspension). This paper abbreviates the contribution of bogie suspension seating configurations & V-rod Forces on life of heavy duty bogie rear axle casing. In-service DRT hot spot observations were reported on heavy duty rear axle on few models with bogie suspension. In order to find the root cause, devising a proper testing and analysis method is of prime importance. An extensive effort was made to device test methodology based on customer application and field visits.
Technical Paper

E-Drive System Selection Criterion for EV Commercial and Passenger Vehicles Segments

2024-01-16
2024-26-0253
Climate change due to global warming are major concerns. Electric vehicles are one of the promising technologies to curb the climate change by reducing CO2 emissions significantly. Electric vehicle component selection is a complex process, which has to fulfil multiple requirements with trade-off between performance & efficiency, efficiency & cost, performance & NVH, packaging & performance etc. In addition, E-drive selection in passenger & commercial vehicle is different due to application difference. Hence, it is a great challenge to select right E-Drive comprising motor, MCU and overall gear ratio to meet EV program constraints and targets. This study focuses on criterion used for selecting an E-Drive system comprising motor, MCU and overall gear ratio for electric vehicles in commercial and passenger vehicle segments.
Technical Paper

Estimation of Gear Utilization and Durability Test Specifications through Virtual Road Torque Data Collection for Light Commercial Vehicles

2024-01-16
2024-26-0257
The automotive world is rapidly moving towards achieving shorter lead time using high-end technological solutions by keeping up with day-to-day advancements in virtual testing domain. With increasing fidelity requirements in test cases and shorter project lead time, the virtual testing is an inevitable solution. This paper illustrates method adopted to achieve best approximation to emulate driver behavior with 1-D (one dimensional) simulation based modeling approach. On one hand, the physical testing needs huge data collection of various parameters using sensors mounted on the vehicle. The vehicle running on road provides the real time data to derive durability test specifications. One such example includes developing duty cycle for powertrain durability testing using Road Torque Data Collection (RTDC) technique. This involves intense physical efforts, higher set-up cost, frequent iterations, vulnerability to manual errors and causing longer test lead-time.
X