Refine Your Search




Search Results

Technical Paper

High Durable PU Metallic Monocoat system for tractor sheet metal application.

In sheet metal painting for various applications like Tractor, Automobile, most attractive coating is metallic paints and it is widely applied using 3 coats 2 bake or 3 coat 1 bake technology. Both options, results in high energy consumption, higher production throughput time & lower productivity in manufacturing process. During various brainstorming & sustainable initiatives, paint application process was identified for alternative thinking to reduce burden on environment & save energy. Various other industry benchmarking & field performance requirement studies helped us identify the critical to quality parameters. We worked jointly with supplier to develop mono-coat system without compromising the performance & aesthetical properties. This results in achieving better productivity, elimination of two paint layers, substantial reduction in volatile organic content, elimination of one baking cycle and energy saving.
Technical Paper

An alternate cost effective material for rocker arm used in heavy commercial vehicles

Rocker arm in internal combustion engine is very important part which transfer the cam motion and force to the valve. In heavy commercial vehicles, the engine components are design for an infinite life (considerable higher than other components). Recently industries are working for light weight and optimized cost material. Hence it is required to have an optimized cost effective design of rocker arm without affecting its performance. A rocker arm should meet the stiffness and strength requirement. The objective of this study is to find out the alternate material for rocker arm which can provide the similar strength & stiffness as conventional rocker arm material. To achieve the performance and cost target, alternate material cast iron has been evaluated for rocker arm. Cast iron is lighter than the forged steel rocker arm, also it has a good frictional characteristic. Further bush is eliminated from the rocker arm assembly due to self-lubricant property of the cast iron rocker arm.
Technical Paper

Design and Analysis of Automotive Steering Sheet Metal Yoke for High Strength and Rigidity Requirement

The increasing demand for light weighting products due to introduction of various standards and norms for controlling CO2 emissions and to meet the customer requirement of low cost with higher strength and rigidity of product in automotive industry, sheet metal manufacturing technique is adopted for automotive steering yoke for light commercial vehicle. Currently forged yokes are used for higher strength requirement, while sheet metal yokes are being used for small tonnage vehicle. The attempt has been made to improve overall strength and rigidity of the yoke produced by sheet metal operation using SAPH 440 steel with 6.5mm thickness for light commercial vehicle segments. The major challenge identified for this development was developing such a high strength and thickness material with consistency of dimension during forming process and meeting the torsional strength requirement of 500 Nm.
Journal Article

Electrifying Long-Haul Freight - Part I: Review of Drag, Rolling Resistance, and Weight Reduction Potential

Abstract Electric heavy-duty tractor-trailers (EHDTT) offer an important option to reduce greenhouse gases (GHG) for the transportation sector. However, to increase the range of the EHDTT, this effort investigates critical vehicle design features that demonstrate a gain in overall freight efficiency of the vehicle. Specifically, factors affecting aerodynamics, rolling resistance, and gross vehicle weight are essential to arrive at practical input parameters for a comprehensive numerical model of the EHDTT, developed by the authors in a subsequent paper. For example, drag reduction devices like skirts, deturbulators, vortex generators, covers, and other commercially available apparatuses result in an aggregated coefficient of drag of 0.367. Furthermore, a mixed utilization of single-wide tires and dual tires allows for an optimized trade-off between low rolling resistance tires, traction, and durability.

Flares for Tubing

This SAE Standard covers specifications and performance requirements for 37° and 45° single and double flares for tube ends intended for use with SAE J512, SAE J513, SAE J514, and ISO 8434-2 connectors. The flares described in this document are intended for use with SAE metallic tube materials. Considerations such as the effects of wall thickness selection for specific working pressures, identifying appropriate length of thread engagements for specific applications with mating connectors and other associated criteria, shall be the responsibility of the user. For applicable nominal reference working pressures for hydraulic tubing, see SAE J1065 and ISO 10763.
Journal Article

A Multiscale Cylinder Bore Honing Pattern Lubrication Model for Improved Engine Friction

Abstract Three-dimensional patterns representing crosshatched plateau-honed cylinder bores based on two-dimensional Fast Fourier Transform (FFT) of measured surfaces were generated and used to calculate pressure flow, shear-driven flow, and shear stress factors. Later, the flow and shear stress factors obtained by numerical simulations for various surface patterns were used to calculate lubricant film thickness and friction force between piston ring and cylinder bore contact in typical diesel engine conditions using a mixed lubrication model. The effects of various crosshatch honing angles, such as 30°, 45°, and 60°, and texture heights on engine friction losses, wear, and oil consumption were discussed in detail. It is observed from numerical results that lower lubricant film thickness values are generated with higher honing angles, particularly in mixed lubrication regime where lubricant film thickness is close to the roughness level, mainly due to lower resistance to pressure flow.

Stronger, quieter cabs

Worthington expert sees AHSS and active noise cancellation making off-highway cabs safer and less-stressful places to work.
Technical Paper

Vibro-Acoustic Analysis for Modeling Propeller Shaft Liner Material

In recent truck applications, single-piece large-diameter propshafts, in lieu of two-piece propshafts, have become more prevalent to reduce cost and mass. These large-diameter props, however, amplify driveline radiated noise. The challenge presented is to optimize prop shaft modal tuning to achieve acceptable radiated noise levels. Historically, CAE methods and capabilities have not been able to accurately predict propshaft airborne noise making it impossible to cascade subsystem noise requirements needed to achieve desired vehicle level performance. As a result, late and costly changes can be needed to make a given vehicle commercially acceptable for N&V performance prior to launch. This paper will cover the development of a two-step CAE method to predict modal characteristics and airborne noise sensitivities of large-diameter single piece aluminum propshafts fitted with different liner treatments.
Technical Paper

Optimization of Multi-Layer Panel Constructions Using Experimental Modeling via Transfer Matrix Method

In a previous paper [1], a method was introduced to predict the sound transmission loss (STL) performance of multi-layer panel constructions using a measurement-based transfer matrix method. The technique is unique because the characterization of the poro-elastic material is strictly measurement based and does not require modeling the material. In this paper, it is demonstrated how the technique is used to optimize the STL of lightweight, multi-layer panel constructions. Measured properties of several decoupler materials (shoddy and foam) are combined with sheet metal and barrier layers to find optimal combinations. The material properties are measured with the impedance tube per ASTM E2611 [2].