Refine Your Search




Search Results

Technical Paper

An alternate cost effective material for rocker arm for heavy commercial vehicles

Rocker arm in internal combustion engine is very important part which transfer the cam motion and force to the valve. In heavy commercial vehicles, the engine components are design for an infinite life (considerable higher than other components). Recently industries are working for light weight and optimized cost material. Hence it is required to have an optimized cost effective design of rocker arm without affecting its performance. A rocker arm should meet the stiffness and strength requirement. The objective of this study is to find out the alternate material for rocker arm which can provide the similar strength & stiffness as conventional rocker arm material. To achieve the performance and cost target, alternate material cast iron has been evaluated for rocker arm. Cast iron is lighter than the forged steel rocker arm, also it has a good frictional characteristic. Further bush is eliminated from the rocker arm assembly due to self-lubricant property of the cast iron rocker arm.

Stronger, quieter cabs

Worthington expert sees AHSS and active noise cancellation making off-highway cabs safer and less-stressful places to work.
Training / Education

Ferrous Metals Bundle: Steel and Cast Iron

Ferrous metals contain iron and are prized for their tensile strength and durability.  Most are magnetic and contain a high carbon content which generally makes them, with the exception of wrought iron and stainless steel, vulnerable to rust. The following seven on-demand courses are included in the Ferrous Materials Bundle: Steel and Cast Iron.  Each course is approximately one-hour in duration. See Topics/Outline for additional details.
Technical Paper

Thermal Analysis of Steel and Aluminium Pistons for an HSDI Diesel Engine

Chromium-molybdenum alloy steel pistons, which have been used in commercial vehicle applications for some time, have more recently been proposed as a means of improving thermal efficiency in light-duty applications. This work reports a comparison of the effects of geometrically similar aluminium and steel pistons on the combustion characteristics and energy flows on a single cylinder high-speed direct injection diesel research engine tested at two speed / load conditions (1500 rpm / 6.9 bar nIMEP and 2000 rpm/25.8 bar nIMEP) both with and without EGR. The results indicate that changing to an alloy steel piston can provide a significant benefit in brake thermal efficiency at part-load and a reduced (but non-negligible) benefit at the high-load condition and also a reduction in fuel consumption. These benefits were attributed primarily to a reduction in friction losses.
Technical Paper

Composite Components for Vehicle Lightweight: Springs, Wishbones, Low-Cost Hydrogen Tanks, Demise of Astronautic Composite Overwrapped Pressure Vessel

SARDOU SAS has invented in 1992 composite “C” springs (patented in 1993), these springs where offering a high energy density of 1350 joules per kilogram (compared to 300 for steel springs). This huge energy density means a potential 78% weight savings! But in the last century, weight saving was less important and platform managers were reluctant to use anything other than coil springs. So, in 2002, in order to comply with their wishes, SARDOU SAS invented composite coils springs. Easy to fit in standard suspensions, Composite coils springs are the optimum choice for McPherson-strut suspensions. As weight saving is now mandatory, composite springs, are the best choice for automotive suspensions, offering a 50% weight saving compared to steel. A Joint Venture, between SARDOU and SOGEFI Suspensions SA called S.ARA, was created in 2008 in order to mass produce composite coils springs; the official Start Of Production happen in 2014 for AUDI.
Technical Paper

Wheel Durability and Life Improvement - Valve Hole Position Optimization in Commercial Vehicle Wheel Using Segmental Loading Conditions

In Automotive, Steel wheels are exponentially replaced by Aluminum wheels because of its feather light, agile performance and better acceleration. One such widely used size is 11.75 x 22.5 wheels for trucks and trailer segment. During the design stage of 11.75 x 22.5 wheel, the valve hole was placed away from the stress concentration zone to reduce the stress on the holes and also the design was validated through all conventional wheel rim testing methodologies (Like CFT, RFT and Bi-axial) and the wheel passed all the test requirements. During the field trials, failures were observed on the valve holes, despite of this hole was away from stress concentration region. Understood from the field trials that, the regular testing was not able to simulate the real field conditions for this particular size and changed the boundary condition in our FEA to simulate the actual conditions. After changing the boundary conditions, we could able to observe more stress in valve hole.

Clip Fastener Fitting

This SAE Standard covers material and dimensional requirements of steel clip fastener fittings. These fittings are intended for use in hydraulic systems on industrial equipment primarily in mining applications.
Technical Paper

SmEdA Vibro-Acoustic Modeling of a Trimmed Truck Cab in the Mid-Frequency Range

The City Lightweight and Innovative Cab (CLIC) project was a scientific collaboration gathering public and private organizations. The aim was to propose an innovative lighten truck cab, where a high strength steel was used. As long as it could affect directly the acoustic environment of the cab, it was necessary to be able to simulate the vibroacoustic behavior of the truck cab in the mid frequency range. The dissipative treatments used for noise and vibration control such as viscoelastic patches and acoustic absorbing materials must then be taken into account in the problem. A process based on the SmEdA (Statistical modal Energy distribution Analysis) method was developed and is presented in this paper. SmEdA allows us substructuring the global problem, to study the interaction between the floor and the interior cavity.
Technical Paper

Modelling a Rear Bumper of Goods Transport Vehicle Made of Glass Fiber Reinforced Polymer

Due to the mass production process of the automobile industry, develop a product by reducing its cost has become an important aspect in its elaboration. This goal is to replace the higher cost material for an alternative that offers the same performance at a lower cost. The use of composite materials in the automotive industry has gradually evolved over the years. However, the use of composite materials in the structure of the automobile depends on a number of factors, such as large production scale, fast manufacturing process and economy, suiting the high demand of the automobile industry. Fiberglass composites are widely used in the market because of their good mechanical and physical properties combined with the comparatively low cost of production.

Cast Shot and Grit Size Specifications for Peening and Cleaning

This SAE Recommended Practice pertains to blast cleaning and shot peening and provides for standard cast shot and grit size numbers. For shot, this number corresponds with the opening of the nominal test sieve, in ten thousandths of inches1, preceded by an S. For grit, this number corresponds with the sieve designation of the nominal test sieve with the prefix G added. These sieves are in accordance with ASTM E 11. The accompanying shot and grit classifications and size designations were formulated by representatives of shot and grit suppliers, equipment manufacturers, and automotive users.
Journal Article

A New Piston Insulation Concept for Heavy-Duty Diesel Engines to Reduce Heat Loss from the Wall

To reduce heat transfer between hot gas and cavity wall, thin Zirconia (ZrO2) layer (0.5mm) on the cavity surface of a forged steel piston was firstly formed by thermal spray coating aiming higher surface temperature swing precisely synchronized with flame temperature near the wall resulting in the reduction of temperature difference. However, no apparent difference in the heat loss was analyzed. To find out the reason why the heat loss was not so improved, direct observation of flame impingement to the cavity wall was carried out with the top view visualization technique, for which one of the exhaust valves was modified to a sapphire window. Local flame behavior very close to the wall was compared by macrophotography. Numerical analysis by utilizing a three-dimensional simulation was also carried out to investigate the effect of several parameters on the heat transfer coefficient.
Technical Paper

Fabrication and Experimental Analysis of Epoxy-Glass Fiber Composite Leaf Spring

Conventional materials like steel, brass, aluminum etc will fail without any indication, cracks initiation, propagation, will takes place with a short span. Now-a-days to overcome these problem, conventional materials are replaced by hybrid composite material. Not only have this conventional material failed to meet the requirement of high technology applications, like space applications and marine applications and structural applications in order to meet the above requirements new materials are being searched. Hybrid composites materials found to the best alternative with its unique capacity of designing the materials to give required properties and light weight. This paper aims to preparing hybrid composite using artificial fibers. Epoxy as resin and glass fiber as fiber for artificial hybrid composite to make a laminate for preparing leaf spring.
Technical Paper

Deconstruction of UN38.3 into a Process Flowchart

This paper will discuss a compliance demonstration methodology for UN38.3, an international regulation which includes a series of tests that, when successfully met, ensure that lithium metal and lithium ion batteries can be safely transported. Many battery safety regulations, such as FMVSS and ECE, include post-crash criteria that are clearly defined. UN38.3 is unique in that the severity of the tests drove changes to battery design and function. Another unique aspect of UN38.3 is that the regulatory language can lead to different interpretations on how to run the tests and apply pass/fail criteria; there is enough ambiguity that the tests could be run very differently yet all meet the actual wording of the regulation. A process was created detailing exactly how to run the tests to improve consistency among test engineers. As part of this exercise, several tools were created which assist in generating a test plan that complies with the UN38.3 regulation.
Journal Article

Heat Loss Analysis of a Steel Piston and a YSZ Coated Piston in a Heavy-Duty Diesel Engine Using Phosphor Thermometry Measurements

Diesel engine manufacturers strive towards further efficiency improvements. Thus, reducing in-cylinder heat losses is becoming increasingly important. Understanding how location, thermal insulation, and engine operating conditions affect the heat transfer to the combustion chamber walls is fundamental for the future reduction of in-cylinder heat losses. This study investigates the effect of a 1mm-thick plasma-sprayed yttria-stabilized zirconia (YSZ) coating on a piston. Such a coated piston and a similar steel piston are compared to each other based on experimental data for the heat release, the heat transfer rate to the oil in the piston cooling gallery, the local instantaneous surface temperature, and the local instantaneous surface heat flux. The surface temperature was measured for different crank angle positions using phosphor thermometry.
Journal Article

Cyclic Material Behavior of High-Strength Steels Used in the Fatigue Assessment of Welded Crane Structures with a Special Focus on Transient Material Effects

The cyclic material behavior is investigated, by strain-controlled testing, of 8 mm thick sheet metal specimens and butt joints, manufactured by manual gas metal arc welding (GMAW). The materials used in this investigation are the high-strength structural steels S960QL, S960M and S1100QL. Trilinear strain-life curves and cyclic stress-strain curves have been derived for the base material and the as-welded state of each steel grade. Due to the cyclic softening in combination with a high load level at the initial load cycle, the cyclic stress-strain curve cannot be applied directly for a fatigue assessment of welded structures. Therefore, the transient effects have been analyzed in order to describe the time-variant material behavior in a more detailed manner. This should be the basis for the enhancement of the fatigue life estimation.

Off-Road Tire Replacement Guidelines

This SAE information report covers the basic guidelines concerning off-road tire conditions that warrant replacement, removal, or repair. This material can assist the tire user in establishing specific written procedures for each job site.

Flares for Tubing

This SAE Standard covers specifications and performance requirements for 37° and 45° single and double flares for tube ends intended for use with SAE J512, SAE J513, SAE J514, and ISO 8434-2 connectors. The flares described in this document are intended for use with SAE metallic tube materials. Considerations such as the effects of wall thickness selection for specific working pressures, identifying appropriate length of thread engagements for specific applications with mating connectors and other associated criteria, shall be the responsibility of the user. For applicable nominal reference working pressures for hydraulic tubing, see SAE J1065 and ISO 10763.
Technical Paper

Weight Optimisation of Dumper Body Structure Conserving Stiffness, Buckling and Dent Performance

The entire commercial vehicle industry is moving towards weight reduction to leverage on the latest materials available to benefit in payload & fuel efficiency. General practice of weight reduction using high strength steel with reduced thickness in reference to Roark’s formula does not consider the stiffness & dent performance. While this helps to meet the targeted weight reduction keeping the stress levels within the acceptable limit, but with a penalty on stiffness & dent performance. The parameters of stiffener like thickness, section & pitching are very important while considering the Stiffness, bucking & dent performance of a dumper body. The Finite Element Model of subject dumper body has been studied in general particularly on impact of dent performance and is correlated with road load data to provide unique solution to the product. The impact of payload during loading of dumper is the major load case.

Ignition Distributors - Marine

This SAE Recommended Practice covers distributors used on marine engines. NOTE: This includes devices referred to as high voltage switches used for distributing high voltage to the appropriate spark plugs but does not contain any crank position sensing function.