Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Applied Vehicle Dynamics

2024-09-23
Take notes! Take the wheel! There is no better place to gain an appreciation for vehicle dynamics than from the driver’s seat. Spend three, intense days with a world-renowned vehicle dynamics engineer and SAE Master Instructor, his team of experienced industry engineers, and the BMW-trained professional driving instructors. They will guide you as you work your way through 12 classroom modules learning how and why vehicles go, stop and turn. Each classroom module is immediately followed by an engaging driving exercise on BMW’s private test track.
Technical Paper

Path-Tracking Control for Four-Wheel Steer/Drive Agricultural Special Electric Vehicles Considering Stability

2024-04-25
2024-01-5051
With the modernization of agriculture, the application of unmanned agricultural special vehicles is becoming increasingly widespread, which helps to improve agricultural production efficiency and reduce labor. Vehicle path-tracking control is an important link in achieving intelligent driving of vehicles. This paper designs a controller that combines path tracking with vehicle lateral stability for four-wheel steer/drive agricultural special electric vehicles. First, based on a simplified three-degrees-of-freedom vehicle dynamics model, a model predictive control (MPC) controller is used to calculate the front and rear axle angles. Then, according to the Ackermann steering principle, the four-wheel independent angles are calculated using the front and rear axle angles to achieve tracking of the target trajectory.
Technical Paper

A study on estimation of stuck probability in off-road based on AI

2024-04-09
2024-01-2866
After the COVID-19 pandemic, leisure activities and cultures have undergone significant transformations. Particularly, there has been an increased demand for outdoor camping. Consequently, the need for capabilities that allow vehicles to navigate not only paved roads but also unpaved and rugged terrains has arisen. In this study, we aim to address this demand by utilizing AI to introduce a 'Stuck Probability Estimation Algorithm' for vehicles on off-road. To estimate the 'Stuck Probability' of a vehicle, a mathematical model representing vehicle behavior is essential. The behavior of off-road driving vehicles can be characterized in two main aspects: firstly, the harshness of the terrain (how uneven and rugged it is), and secondly, the extent of wheel slip affecting the vehicle's traction.
Technical Paper

Torque Vectoring for Lane-Changing Control during Steering Failures in Autonomous Commercial Vehicles

2024-04-09
2024-01-2328
Lane changing is an essential action in commercial vehicles to prevent collisions. However, steering system malfunctions significantly escalate the risk of head-on collisions. With the advancement of intelligent chassis control technologies, some autonomous commercial vehicles are now equipped with a four-wheel independent braking system. This article develops a lane-changing control strategy during steering failures using torque vectoring through brake allocation. The boundaries of lane-changing capabilities under different speeds via brake allocation are also investigated, offering valuable insights for driving safety during emergency evasions when the steering system fails. Firstly, a dual-track vehicle dynamics model is established, considering the non-linearity of the tires. A quintic polynomial approach is employed for lane-changing trajectory planning. Secondly, a hierarchical controller is designed.
Technical Paper

Braking Judder Test and Simulation Analysis of Commercial Vehicle

2024-04-09
2024-01-2342
Brake judder affects vehicle safety and comfort, making it a key area of research in brake NVH. Transfer path analysis is effective for analyzing and reducing brake judder. However, current studies mainly focus on passenger cars, with limited investigation into commercial vehicles. The complex chassis structures of commercial vehicles involve multiple transfer paths, resulting in extensive data and testing challenges. This hinders the analysis and suppression of brake judder using transfer path analysis. In this study, we propose a simulation-based method to investigate brake judder transfer paths in commercial vehicles. Firstly, road tests were conducted to investigate the brake judder of commercial vehicles. Time-domain analysis, order characteristics analysis, and transfer function analysis between components were performed.
Technical Paper

Measurement and Modeling for Creep Groan of a Drum Brake in Trucks

2024-04-09
2024-01-2351
An experiment is carried out to measure creep groan of a drum brake located in a trailer axle of a truck. The noise nearby the drum brake and accelerations on brake shoes, axle and trailer frame are collected to analyze the occurring conditions and characteristics of the creep groan. A multi-body dynamics model with 1/4 trailer chassis structures is established for analyzing brake component vibrations that generates the creep groan. In the model, the contact force between brake cam and brake shoes, the contact friction characteristics between brake linings and inner circular surface of brake drum, and the properties of chassis structure are included. Dynamic responses of brake shoes, axle and trailer frame during the braking process are estimated using the established model and the responses are compared with the measured results, which validate the model.
Technical Paper

Commercial Vehicle's Longitudinal Deceleration Precise Control Considering Vehicle-Actuator Dynamic Characteristics

2024-04-09
2024-01-2313
The installation of the Electronic Braking System (EBS) could effectively improve braking response speed, shorten braking distance, and ensure driving safety of commercial vehicles. However, during longitudinal deceleration control process, the commercial vehicles face not only challenges such as large inertia mass and random road gradient resistance of the vehicle layer, but also non-linear characteristics of the EBS actuator layer. In order to solve these problems, this paper proposes a commercial vehicle’s longitudinal deceleration precise control strategy considering vehicle-actuator dynamic characteristics. First, longitudinal dynamics of commercial vehicle is analyzed, and so is the EBS’ non-linear response hysteresis characteristics. Then, we design the dual layer deceleration control strategy. In vehicle layer, the recursive least squares with forgetting factor and Kalman filtering are comprehensively applied to dynamically estimate the vehicle mass and driving road slope.
Technical Paper

Combination of Dissimilar Overlay Materials for Engine Bearing Life Extension

2024-04-09
2024-01-2066
Nowadays, Bismuth (Bi) is being applied as an overlay material for engine bearings instead of Lead (Pb) which is an environmentally harmful material. Bi overlay has already been a solid performer in some automotive engine sectors due to its superior load carrying capacity and good robustness characteristic which are necessary to maintain its longevity during the lifetime of engines. The replacement is also seen on relatively larger size engines, such as Trucks and Off-highway heavy duty applications. Basically, these applications require higher power output than passenger cars, and the expected component lifecycle becomes longer. Though Bi has similar material characteristic to traditional Pb, it becomes challenging for the material alone to satisfy these requirements. Polymer overlay is known for its superior anti-wear performance and longer lifetime due to less adhesion against a steel counterpart than metallic materials (included Bi).
Technical Paper

Simulation of Crush Behavior and Energy Absorption of Vehicle Li-Ion Battery Module with Prismatic Cells

2024-04-09
2024-01-2492
Lithium-ion batteries serve as the main power source for contemporary electric vehicles. Safeguarding these batteries against damage is paramount, as it can trigger accelerated performance deterioration, potential fire hazards, environmental threats, and more. This study explores damage progression of a commercial vehicle lithium-ion battery module containing prismatic cells under indentation crush loading. We employed computational simulations of mechanical loading tests to investigate this behavior. Physical tests involved subjecting modules to low-speed (0.05 m/s) indentations using a V-shaped stainless-steel wedge, under six unique loading conditions. During the tests, force, and voltage change with wedge displacement were monitored. Utilizing experimental insights, we constructed a finite element model, which included key components of the battery module, such as the prismatic cells, steel frames, and various plastic parts.
Technical Paper

Comparison of a Tractor-Semitrailer Rollover Test and HVE Simulations

2024-04-09
2024-01-2487
Building upon prior research, this paper compares computer simulations to a previously conducted rollover crash test of a tractor-semitrailer. The effects of torsional stiffness were elucidated during the correlation of simulations to the rollover test. A commercially available vehicle dynamics and reconstruction software was used for the simulation. Unique aspects of the rollover crash test were modeled in the simulation. A tractor-semitrailer quarter-turn rollover crash test conducted by IMMI was reconstructed using impact and vehicle dynamics models within the simulation software HVE (Human, Vehicle & Environment). The SIMON (SImulation MOdel Non-linear) module and the DyMESH (Dynamic MEchanical SHell) module within HVE were used. During the IMMI test, onboard instrumentation recorded acceleration and roll rate data in six degrees of freedom to characterize both tractor and semitrailer dynamics before and during the rollover event.
Journal Article

Weld Fatigue Damage Assessment of Rail Track Maintenance Equipment: Regulatory Compliance and Practical Insights

2024-03-04
Abstract The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs.
Journal Article

Influence of Exhaust Aftertreatment System on Powertrain Vibration Behavior

2024-03-01
Abstract NVH refinement of commercial vehicles is the key attribute for customer acceptance. Engine and road irregularities are the two major factors responsible for the same. During powertrain isolators’ design alone, the mass and inertia of the powertrain are usually considered, but in practical scenarios, a directly coupled subsystem also disturbs the boundary conditions for design. Due to the upgradation in emission norms, the exhaust aftertreatment system of modern automotive vehicles becomes heavier and more complex. This system is further coupled to the powertrain through a flexible joint or fixed joint, which results in the disturbance of the performance of the isolators. Therefore, to address this, the isolators design study is done by considering a multi-body dynamics model of vehicles with 16 DOF and 22 DOF problems, which is capable to simulate static and dynamic real-life events of vehicles.
Technical Paper

Analyzing Mechanical Behaviour of Aluminium Alloy Composites Reinforced with Ceramics

2024-02-23
2023-01-5110
Aluminium composites are remarkably used in automotive, aerospace, and agricultural sectors because of their lightweight with definable mechanical properties. The stir casting route was followed to fabricate cylindrical samples with base aluminium alloy LM4, LM4/SiC, LM4/Al2O3, and LM4/SiC/Al2O3. The tensile strength, compressive strength, hardness, and micro-structural analysis were performed on samples and Finite element analysis (FEA) was adopted to predict the failure modes of composites. The composites experimental results were found to be in line with the FEA results, however, the LM4/SiC/Al2O3 revealed better results on the mechanical properties when compared with other composite configurations. The mechanical properties improvement like hardness 5%-11%, tensile strength 10.26%-20.67%, compressive strength 15.19% - 32.58% and 71.52 - 82.1% reduction in dimension have been achieved in LM4/SiC/Al2O3 composite comparing to base metal.
Technical Paper

Microstructure, Worn Surface, Wear Assessment and Taguchi’s Approach of Titanium Alloy Hybrid Metal Matrix Composites for Automotive Applications

2024-02-23
2023-01-5103
Lightweight materials are in great demand in the automotive sector to enhance system performance. The automotive sector uses composite materials to strengthen the physical and mechanical qualities of light weight materials and to improve their functionality. Automotive elements such as the body shell, braking system, steering, engine, battery, seat, dashboard, bumper, wheel, door panelling, and gearbox are made of lightweight materials. Lightweight automotive metals are gradually replacing low-carbon steel and cast iron in automobile manufacture. Aluminium alloys, Magnesium alloys, Titanium alloys, advanced high-strength steel, Ultra-high strength steel, carbon fiber-reinforced polymers, and polymer composites are examples of materials used for light weighing or automobile decreased weight. The ever-present demand for fuel-efficient and ecologically friendly transport vehicles has heightened awareness of lowering weight and performance development.
Technical Paper

Application of Desirability Approach to Determine Optimal Turning Parameters

2024-02-20
2024-01-5022
Aluminum alloys are employed in agricultural equipment, aerospace sectors, medical instruments, machinery, automobiles, etc. due to their physical and mechanical characteristics. The geometrical shape and size of the parts are modified in turning operation by using a single-point cutting tool. A356 aluminum alloy is widely used in various engineering sectors, hence there is a necessity to produce A-356 components with quality. The inappropriate cutting parameters used in turning operation entail high production costs and reduce tool life. Box–Behnken design (BBD) based on response surface methodology (RSM) was used to design the experiments such that the experiment trials were conducted by varying cutting parameters like N-spindle speed (rpm), f-feed rate (mm/rev), and d-depth of cut (mm). The multi-objective responses, such as surface roughness (SR) and metal removal rate (MRR) were analyzed with the desirability method.
Technical Paper

Virtual Design Validation of Innovative High Ground Clearance Tractor Kit

2024-01-16
2024-26-0066
An agricultural tractor is often modified for special farming applications such as horticulture where the standard design is not suitable or accessible. In such cases, farm equipment manufacturers are demanded frugal and cost effect Engineered farming solutions. One such design is the innovative High Ground Clearance Tractor (HGCT) kit offered to increase the Tractor height without damaging the crop during farming operations. In this paper, the author proposes a durability assessment method to evaluate the HGCT kit attachments to meet the durability criteria. Road load data acquisition is done to measure the acceleration and strain levels for various horticulture operations such as tillage, spraying and transportation. Actual operating conditions are simulated with the help of four poster durability setups inside the lab which helps to reduce the field testing for design iterations.
Technical Paper

Effect of Lift Axle Suspension Design on Heavy Commercial Vehicle Handling Performance

2024-01-16
2024-26-0049
The cost of fuels used for automobile are rising in India on account of high global crude oil prices. The fuel cost constitutes major portion of total cost of operation for Heavy commercial vehicles. Hence, the trend is to carry the goods transport through higher payload capacity rigid/straight trucks that offer lower transportation cost per unit of goods transported. This is driving the design of multi-axle heavy trucks that have lift axles. In addition, improved network of highways and road infrastructure is leading to increase in average operating speed of heavy commercial vehicles. It has made increased focus on occupant as well as road safety while designing the heavy trucks. Hence, the analysis of lift axle suspension from the point of view of vehicle handling and stability is essential. There are two basic kinds of lift axle designs used in heavy commercial vehicles: self-steered lift axle having single tire on each side and non-steered lift axle with dual tires on each side.
Technical Paper

A Study on Traction Battery Mounting Arrangements in Different EV Buses

2024-01-16
2024-26-0121
Adaption of EV powertrains in existing vehicle architecture has created many unique challenges in meeting performance, reliability, safety, ease of manufacturing & serviceability at optimum cost. Mounting of large size battery packs in existing vehicle architecture is one of them. Specific energy & the energy density of Lithium ion batteries are very lower compared to Diesel & Petrol, which requires high volume & weight for equivalent energy storage. For movement of many passengers and to ensure sufficient range EV buses typically needs large amount of energy and for storage of same bigger size battery packs are required. These large size batteries directly affect vehicle architecture, seating layout, ease of assembly & serviceability. Moreover the heavy mass of batteries directly influences vehicle dynamics & performance characteristics such as vehicle handling, roll & NVH. The most important consideration in design of EV vehicles in general and buses in specific is safety.
X