Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Optimization of Compression Ratio for DI Diesel Engines for better fuel Economy

2019-11-21
2019-28-2431
Fuel economy is becoming one of the key parameter as it not only accounts for the profitability of commercial vehicle owner but also has impact on environment. Fuel economy gets affected from several parameters of engine such as Peak firing pressure, reduction in parasitic losses, improved volumetric efficiency, improved thermal efficiency etc. Compression ratio is one of key design criteria which affects most of the above mentioned parameters, which not only improve fuel efficiency but also results in improvement of emission levels. This paper evaluates the optimization of Compression ratio and study its effect on Engine performance. The parameters investigated in this paper include; combustion bowl volume in Piston and Cylinder head gasket thickness as these are major contributing factors affecting clearance volume and in turn the compression ratio of engine. Based on the calculation results, an optimum Compression Ratio for the engine is selected.
Technical Paper

High Durable PU Metallic Monocoat system for tractor sheet metal application.

2019-11-21
2019-28-2541
In sheet metal painting for various applications like Tractor, Automobile, most attractive coating is metallic paints and it is widely applied using 3 coats 2 bake or 3 coat 1 bake technology. Both options, results in high energy consumption, higher production throughput time & lower productivity in manufacturing process. During various brainstorming & sustainable initiatives, paint application process was identified for alternative thinking to reduce burden on environment & save energy. Various other industry benchmarking & field performance requirement studies helped us identify the critical to quality parameters. We worked jointly with supplier to develop mono-coat system without compromising the performance & aesthetical properties. This results in achieving better productivity, elimination of two paint layers, substantial reduction in volatile organic content, elimination of one baking cycle and energy saving.
Technical Paper

An alternate cost effective material for rocker arm used in heavy commercial vehicles

2019-11-21
2019-28-2550
Rocker arm in internal combustion engine is very important part which transfer the cam motion and force to the valve. In heavy commercial vehicles, the engine components are design for an infinite life (considerable higher than other components). Recently industries are working for light weight and optimized cost material. Hence it is required to have an optimized cost effective design of rocker arm without affecting its performance. A rocker arm should meet the stiffness and strength requirement. The objective of this study is to find out the alternate material for rocker arm which can provide the similar strength & stiffness as conventional rocker arm material. To achieve the performance and cost target, alternate material cast iron has been evaluated for rocker arm. Cast iron is lighter than the forged steel rocker arm, also it has a good frictional characteristic. Further bush is eliminated from the rocker arm assembly due to self-lubricant property of the cast iron rocker arm.
Technical Paper

Design of Light Weight Hydraulic Connecting Rod for Agricultural Tractor

2019-10-11
2019-28-0016
Hydraulic power train assembly of an agricultural tractor is meant to controls the position and draft of the implement depending upon the type of crop, farming stage, implement type and soil conditions. These variations induce extreme range of loads on the hydraulic system, thus making it challenging to design these components. Hydraulic connecting rod is critical component of hydraulic power train assembly. Standards like IS12224, IS4468 governs the design of hydraulic power train components which regulates the test method for hydraulic power and lift capacity of the tractor. In this paper, a virtual simulation process has been established to design a hydraulic connecting rod to meet the requirements. The hydraulic connecting rod basically functions as a short load transferring link, which is subjected to the operating hydraulic pressure of the hydraulic lifting mechanism. The current circular connecting rod is higher in weight and cost.
Technical Paper

Thumb Design and Optimization for Backhoe Loader

2019-10-11
2019-28-0109
Product Engineering organizations are committed to provide solutions with the right quality and value to customers. Value improvement and efficient product improvement are key considerations for product engineering. In this paper, the Author summaries thumb design and optimization for backhoe loader. The project goal was to create an in-house thumb design. The backhoe thumb attachment was previously a proprietary design of a supplier. The supplier’s design had two major limitations, limited opportunity of design improvements for resolving customer issues and higher total cost. This paper covers details about overcoming these limitations. Multiple variants of backhoe loaders use four different thumbs. Small and mid- range backhoe machine classes use 4-tine and 2-tine thumb depending upon customer applications. The design team targeted an external customer requirement of a more compact design and internal requirement of accelerating design improvement cycle time and reducing cost.
Technical Paper

Design and Analysis of Automotive Steering Sheet Metal Yoke for High Strength and Rigidity Requirement

2019-10-11
2019-28-0122
The increasing demand for light weighting products due to introduction of various standards and norms for controlling CO2 emissions and to meet the customer requirement of low cost with higher strength and rigidity of product in automotive industry, sheet metal manufacturing technique is adopted for automotive steering yoke for light commercial vehicle. Currently forged yokes are used for higher strength requirement, while sheet metal yokes are being used for small tonnage vehicle. The attempt has been made to improve overall strength and rigidity of the yoke produced by sheet metal operation using SAPH 440 steel with 6.5mm thickness for light commercial vehicle segments. The major challenge identified for this development was developing such a high strength and thickness material with consistency of dimension during forming process and meeting the torsional strength requirement of 500 Nm.
Journal Article

Electrifying Long-Haul Freight - Part I: Review of Drag, Rolling Resistance, and Weight Reduction Potential

2019-10-01
Abstract Electric heavy-duty tractor-trailers (EHDTT) offer an important option to reduce greenhouse gases (GHG) for the transportation sector. However, to increase the range of the EHDTT, this effort investigates critical vehicle design features that demonstrate a gain in overall freight efficiency of the vehicle. Specifically, factors affecting aerodynamics, rolling resistance, and gross vehicle weight are essential to arrive at practical input parameters for a comprehensive numerical model of the EHDTT, developed by the authors in a subsequent paper. For example, drag reduction devices like skirts, deturbulators, vortex generators, covers, and other commercially available apparatuses result in an aggregated coefficient of drag of 0.367. Furthermore, a mixed utilization of single-wide tires and dual tires allows for an optimized trade-off between low rolling resistance tires, traction, and durability.
Standard

Flares for Tubing

2019-09-11
WIP
J533
This SAE Standard covers specifications and performance requirements for 37° and 45° single and double flares for tube ends intended for use with SAE J512, SAE J513, SAE J514, and ISO 8434-2 connectors. The flares described in this document are intended for use with SAE metallic tube materials. Considerations such as the effects of wall thickness selection for specific working pressures, identifying appropriate length of thread engagements for specific applications with mating connectors and other associated criteria, shall be the responsibility of the user. For applicable nominal reference working pressures for hydraulic tubing, see SAE J1065 and ISO 10763.
Technical Paper

Balancing Hydraulic Flow and Fuel Injection Parameters for Low-Emission and High-Efficiency Automotive Diesel Engines

2019-09-09
2019-24-0111
The introduction of new light-duty vehicle emission limits to comply under real driving conditions (RDE) is pushing the diesel engine manufacturers to identify and improve the technologies and strategies for further emission reduction. The latest technology advancements on the after-treatment systems have permitted to achieve very low emission conformity factors over the RDE, and therefore, the biggest challenge of the diesel engine development is maintaining its competitiveness in the trade-off “CO2-system cost” in comparison to other propulsion systems. In this regard, diesel engines can continue to play an important role, in the short-medium term, to enable cost-effective compliance of CO2-fleet emission targets, either in conventional or hybrid propulsion systems configuration. This is especially true for large-size cars, SUVs and light commercial vehicles.
Article

Virtual factories accelerate collaboration, advance technologies

2019-08-26
The Commonwealth Center for Advanced Manufacturing (CCAM), a non-profit consortium based in Prince George County, Virginia, uses a 3D visualization lab to expand beyond the walls of its 62,000-square-foot brick and mortar facility and deliver a collaborative development for researchers in industry, academia, and government.
Article

Stronger, quieter cabs

2019-06-12
Worthington expert sees AHSS and active noise cancellation making off-highway cabs safer and less-stressful places to work.
Technical Paper

Structural-Acoustic Modeling and Optimization of a Submarine Pressure Hull

2019-06-05
2019-01-1498
The Energy Finite Element Analysis (EFEA) has been validated in the past through comparison with test data for computing the structural vibration and the radiated noise for Naval systems in the mid to high frequency range. A main benefit of the method is that it enables fast computations for full scale models. This capability is exploited by using the EFEA for a submarine pressure hull design optimization study. A generic but representative pressure hull is considered. Design variables associated with the dimensions of the king frames, the thickness of the pressure hull in the vicinity of the excitation (the latter is considered to be applied on the king frames of the machinery room), the dimensions of the frames, and the damping applied on the hull are adjusted during the optimization process in order to minimize the radiated noise in the frequency range from 1,000Hz to 16,000Hz.
Technical Paper

Driveline NVH Integration of An NA Truck Program

2019-06-05
2019-01-1559
In the current automotive industry, it is common that the driveline subsystem and components are normally from different automotive suppliers for OEMs. In order to ensure proper system integration and successful development of driveline system NVH performances, collaboration efforts between OEMs and suppliers are very demanding and important. In this paper, a process is presented to achieve successfulness in developing and optimizing vehicle integration through effective teamwork between a driveline supplier and a major OEM. The development process includes multiple critical steps. They include target development and roll down, targets being specific and measurable, comprehension of interactions of driveline and vehicle dynamics, accurate definition of sensitivity, proper deployment of modal mapping strategy, which requires open data sharing; and system dynamics and optimization.
Technical Paper

Vibro-Acoustic Analysis for Modeling Propeller Shaft Liner Material

2019-06-05
2019-01-1560
In recent truck applications, single-piece large-diameter propshafts, in lieu of two-piece propshafts, have become more prevalent to reduce cost and mass. These large-diameter props, however, amplify driveline radiated noise. The challenge presented is to optimize prop shaft modal tuning to achieve acceptable radiated noise levels. Historically, CAE methods and capabilities have not been able to accurately predict propshaft airborne noise making it impossible to cascade subsystem noise requirements needed to achieve desired vehicle level performance. As a result, late and costly changes can be needed to make a given vehicle commercially acceptable for N&V performance prior to launch. This paper will cover the development of a two-step CAE method to predict modal characteristics and airborne noise sensitivities of large-diameter single piece aluminum propshafts fitted with different liner treatments.
Technical Paper

Optimization of Multi-Layer Panel Constructions Using Experimental Modeling via Transfer Matrix Method

2019-06-05
2019-01-1577
In a previous paper [1], a method was introduced to predict the sound transmission loss (STL) performance of multi-layer panel constructions using a measurement-based transfer matrix method. The technique is unique because the characterization of the poro-elastic material is strictly measurement based and does not require modeling the material. In this paper, it is demonstrated how the technique is used to optimize the STL of lightweight, multi-layer panel constructions. Measured properties of several decoupler materials (shoddy and foam) are combined with sheet metal and barrier layers to find optimal combinations. The material properties are measured with the impedance tube per ASTM E2611 [2].
X