Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

FEA Beyond Basics Thermal Analysis

2019-12-16
Finite Element Analysis (FEA) is a powerful and well recognized tool used in the analysis of heat transfer problems. However, FEA can only analyze solid bodies and, by necessity thermal analysis with FEA is limited to conductive heat transfer. The other two types of heat transfer: convection and radiation must by approximated by boundary conditions. Modeling all three mechanisms of heat transfer without arbitrary assumption requires a combined use of FEA and Computational Fluid Dynamics (CFD).
Training / Education

Principled Negotiation

2019-12-12
This highly interactive workshop focuses training on negotiation strategy and skills. This is not the manipulative, win-lose negotiation approach frequently taught today, where the winner eventually spends time and effort protecting his negotiated advantage against erosion, while the loser continually exploits loopholes and shortcuts to recover lost ground. Traditional negotiation is a wary dance based on mistrust, the true cost of which is lost in quality and brain fatigue - usually for someone other than the negotiator - over the life of the agreement.
Technical Paper

To establish the correlation in between Computer Aided Engineering & physical testing of automotive parts returnable case (Stacktainer).

2019-11-21
2019-28-2569
Automotive returnable cases (Stacktainers) are being used to transport the automotive parts through surface & seaways. No automotive manufacturer wants to spend money on woods, paper & cardboard again and again, it`s better to pay once for robust & reusable cases. these provide better protection to parts from its manufacturing to assembly line of vehicle. While transporting, any kind of crack or failure of returnable cases may lead to loss of money, human & time. To ensure the safety, these pallets have to be validated for vibrations coming from surface irregularities, sea waves & load due to stacking of cases one above other. The objective of this study is to establish a correlation in between the physical testing & simulation in Computer added Engineering (CAE) of automotive returnable case (Stacktainers). There are different types of tests considered to validate the returnable case, rough road evaluation, Multi-axial Vibration & strength evaluation.
Technical Paper

A Mathematical Approach to Determine Die Wear during Forging Process and Validation by Experimental Technique

2019-11-21
2019-28-2563
The automotive industry is constantly trying to develop cost effective, high strength and lightweight components to meet the emission and safety norms while remaining competitive in the market. Forging process plays an important role to produce most of the structural components in a vehicle. Precision forging technology is used to produce components with little or no flash leading to elimination of machining process after forging. The load acting on the dies during net or near net forging is very high and leads to wear in the die. In order to have a good die it is important that die wear which is an inevitable phenomenon in a bulk metal forming processes is predicted mathematically. In this study a review on the vast number of studies done in the area of wear and various predictive models is carried out.
Technical Paper

MOLD IN COLOR DIAMOND WHITE ASA MATERIAL FOR AUTOMOTIVE EXTERIOR APPLICATION

2019-11-21
2019-28-2562
In this paper, mold in color diamond white ASA material has been explored for front bumper grill, fender arch extension and hinge cover applications. Other than aesthetic requirements, these parts have precise fitment requirement under sun load condition in real world usage profile. Structural durability of the design was validated by virtual engineering. Part design and material combinations with better tooling design iterations were analysed by using mold flow analysis. Complete product performances were validated for predefined key test metrics such as structural durability, thermal aging, cold impact, scratch resistance, and weathering criteria. This part met required specification. This mold in color ASA material-based parts has various benefits such as environmentally friendly manufacturing by eliminating environmental issues of coating, easily recycled, and faster part production because intended color achieved in one step during molding.
Technical Paper

Optimization of vehicle side panel to improve crashworthiness.

2019-11-21
2019-28-2573
The front of a car, though susceptible to the biggest impacts in terms of magnitude, has space and additional reinforcement to incorporate various safety measures. The rear has considerable amount of space to contain a proper crash box. The side of the car, though, doesn’t have this flexibility in design, the main limiting parameter being space. Any intrusion into the passenger cabin can result in serious injury or even death. The objective of this work is to improve the crashworthiness of a vehicle’s side so as to reduce intrusion into the passenger cabin. The work is focused on optimizing the door and B pillar. The optimized side panel is compared with the baseline model as per standard. ANSYS solver is used for the simulation. The optimized design applied to the door and B pillar will significantly improve crashworthiness of the vehicle side panel as a whole.
Technical Paper

Body Structure Strength Of Sleeper Coaches During Rollover Test As Per AIS 119

2019-11-21
2019-28-2567
Bus passenger safety has always been a concern considering various impacts like side impact, front impact, rollover etc. happening in real life scenarios. Various standards have been formulated for simulating these conditions and with respect to rollover, standards like ECE-R66 are being used to understand the superstructure strength. In India, we have AIS-052 (bus body code) and AIS-031 specific for bus rollover testing. AIS-119 has been published for rollover testing of sleeper coaches with modifications in the survival space creation in sleeper coaches for berths. With physical testing being more expensive, CAE simulations are being considered as vital option which also helps in design modification in a lesser time. This paper discusses the scope of numerical simulation of sleeper coach rollover using an explicit dynamic solver RADIOSS to understand the structure deformations, survival space clearances/intrusions.
Technical Paper

Characterization and Durability of Mold-In-Color Engineering Plastics

2019-11-21
2019-28-2542
Plastics are prone to photo oxidative and thermal oxidative degradation under usage conditions due to their chemical nature. From sustainability and cost standpoint, there is an increasing focus on Mold-In-Color (MIC) plastic materials. Simultaneously customer’s expectations on the perceived quality of these MIC parts has been increasing with attractive color and glossy appearance. A study was conducted to analyze the product quality and durability aspects over a prolonged exposure to accelerated weathering condition. Material selected for this study were injection molded specimens of ABS and PC/ABS used in automotive passenger vehicles.
Technical Paper

AUTOMOTIVE VEHICLE TRANSMISSION SYSTEMS

2019-11-21
2019-28-2521
Abstract:At present there are a few types of transmission system available in automated industry, there might some variation in transmission system but the basic working and principle is still the same. Many big automotive manufacturers use different technologies in their transmission system but they still use the same basic principle in their transmission systems. This new technology which is brought by Koenigsegg has changed the way people think about transmission system. This new transmission system is known as Koenigsegg Direct Drive and is currently used by one automotive manufacturer and in one vehicle only, but it soon might change the way it is now.
Technical Paper

Electric Vehicle Thermal Management System For Hot Climate Regions

2019-11-21
2019-28-2507
ELECTRIC VEHICLE THERMAL MANAGEMENT SYSTEM FOR HOT CLIMATE REGIONS Rana Tarun*, Yamamoto Yuji, Kumar Ritesh, Bhagatkar Shubhada Pranav Vikas India Private Limited, India Key Words Electric Vehicles (EV); Battery Thermal Management System (BTMS); COP; Electric Vehicle Thermal Management System (EVTMS); BTMS and HVAC System Integration; Thermal System Performance Comparison; Active Liquid Cooling; EV Battery Cooling Research and/or Engineering Questions/Objective Electric Vehicles is the need of time to limit global warming and it is in application at a wide scale in colder or mild climate regions where ambient temperature is limited to mild or moderate level. Its application (Heat pump, CO2) is constrained to cold climates only due to securing better COP for heating function, sacrificing cooling COP of the existing system when operated in Hot Climate Regions, thus limiting its application to nearly half of the automotive user-base.
Technical Paper

Thermal Management of Li-Ion Battery Pack using GT-SUITE

2019-11-21
2019-28-2500
Objective It is very important to simulate the battery pack being built to understand its behavior when used in applications especially Electric vehicles (EV). All Li-Ion cells are not the same. They need to be characterized before building any battery pack. Hence modeling the battery pack to simulated its performance in the actual conditions becomes important. Methodology To understand the behavior of cells in the on-field environment, they are tested at various conditions like different rates of charging/discharging, various depth of discharge (DOD), ambient temperature, etc. HPPC test is also performed on cells to derive its RC model equivalent model. GT Suite simulation software is used to model the Li-Ion cell using the testing data. Depending on the pack configuration, the modeled cell is connected in the required series and parallel configuration, to study the battery pack with respect to aging, performance and cooling requirements.
Technical Paper

SIMULATION OF SOFTENING AND RUPTURE IN MULTILAYERED FUEL TANK MATERIAL

2019-11-21
2019-28-2557
Research and/or Engineering Questions/Objective Plastic automotive fuel tanks made up of blow molded, multi-layered, high-density polyethylene (HDPE) material can take complex shapes with varying thickness. Accidental drop of fuel tank from a height during handling can lead to development of cracks. Damage can also occur due to an impact during a crash. This can be catastrophic due to flammability of the fuel. The objective of this work is to characterize and develop a failure model for the fuel tank material to simulate damage and enhance predictive capability of CAE for chassis and safety load cases. Methodology Different aspects were considered to develop a characterization and modelling strategy for the HDPE fuel tank. Material properties can be influenced by factors such as, service temperature, rate of deformation, state of stress etc.
Technical Paper

Employing natural plant based fiber in interior automotive parts for cost & weight benefit

2019-11-21
2019-28-2559
The Automotive industry is in ever more need for a lesser weight car due to progressively stringent emission norms and the demand of customer to have better mileage. It can be a gargantuan challenge for automotive manufacturers to search for lesser weight material to meet both customers as well as regulatory norms. But in some cases such lower weight material can increase the cost and adding a expensive material which increases overall cost to a price sensitive market like India is not favorable. One such solution is using the indigenous plant fiber (Jute) in combination with propylene (PP) to make Interior plastics components. Jute a vegetable fiber also referred to as "the golden fiber" has high tensile strength, low extensibility and is well established in fabric, packing, agriculture, construction industries. The biodegradable Jute lesser weight & abundance (India is the leading manufacturer of the Jute) can be utilized in making automobile trim parts in India.
Technical Paper

MASS OPTIMIZED HOOD DESIGN FOR CONFLICTING PERFORMANCES

2019-11-21
2019-28-2546
MASS OPTIMIZED HOOD DESIGN FOR CONFLICTING PERFORMANCES Santosh Swamy, Gulshan Noorsumar, Shivakumar Chidanandappa General Motors Technical Center, India Keywords Hood; Head Injury Criterion (HIC); Stiffness; Shape optimization; Multi-Disciplinary Optimization (MDO) Research and/or Engineering Questions/ Objective The objective of this work is to obtain a light weight hood which has least possible mass, and at the same time meets all contradicting performances of pedpro (pedestrian protection) and structural stiffness disciplines. Passenger vehicles have stringent safety norms from pedpro perspective to meet child and adult head injury criteria (HIC). These pedestrian safety requirements often conflict with structural stiffness performance criteria which pose a challenge for most automotive OEMs. Therefore, there is a growing need for mass optimization and performance balancing to meet both the requirements simultaneously.
X