Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Fundamentals of Threaded Fasteners

2019-12-18
Fastener experts believe that upwards of 95% of all fastener failures are the result of either the wrong fastener for the job or improper installation. Whether this shocking figure is accurate or not, it is irrefutable that threaded fasteners are poorly misunderstood by many in both the fastener and user communities. In October 1990 the USS Iwo Jima suffered a catastrophic steam valve accident minutes after leaving port following repairs to its steam plant. In one of the single most deadly events of Operation Desert Storm, ten of the eleven crewmen present in the engine compartment would lose their lives.
Training / Education

FEA Beyond Basics Thermal Analysis

2019-12-16
Finite Element Analysis (FEA) is a powerful and well recognized tool used in the analysis of heat transfer problems. However, FEA can only analyze solid bodies and, by necessity thermal analysis with FEA is limited to conductive heat transfer. The other two types of heat transfer: convection and radiation must by approximated by boundary conditions. Modeling all three mechanisms of heat transfer without arbitrary assumption requires a combined use of FEA and Computational Fluid Dynamics (CFD).
Training / Education

Weibull-Log Normal Analysis Workshop

2019-12-09
RMS (Reliability-Maintainability-Safety-Supportability) engineering is emerging as the newest discipline in product development due to new credible, accurate, quantitative methods. Weibull Analysis is foremost among these new tools. New and advanced Weibull techniques are a significant improvement over the original Weibull approach. This workshop, originally developed by Dr. Bob Abernethy, presents special methods developed for these data problems, such as Weibayes, with actual case studies in addition to the latest techniques in SuperSMITH® Weibull for risk forecasts with renewal and optimal component replacement.
Training / Education

Vibration Analysis Using Finite Element Analysis (FEA)

2019-12-02
Finite Element Analysis (FEA) has been used by engineers as a design tool in new product development since the early 1990's. Until recently, most FEA applications have been limited to static analysis due to the cost and complexity of advanced types of analyses. Progress in the commercial FEA software and in computing hardware has now made it practical to use advanced types as an everyday design tool of design engineers. In addition, competitive pressures and quality requirements demand a more in-depth understanding of product behavior under real life loading conditions.
Technical Paper

Effect of Tyre inflation Pressure on Rolling Resistance of Tyre

2019-11-21
2019-28-2415
Rolling resistance, is nothing but the rolling drag, is the force resisting the motion when a body rolls on a surface. It is mainly caused by non-elastic effects; that is,not all the energy needed for deformation of the wheel, roadbed, etc. It is recovered when the pressure is removed, in the form of hysteresis losses and permanent deformation of the tyre surface. So, the rolling resistance contributes to the deformation of roadbed as well as tyre surface of the vehicle. Factors contributing in rolling resistance are tyre inflation pressure, wheel diameter, speed, load on wheel,, surface adhesion, sliding, and relative micro-sliding between the surfaces of contact. In this concerned paper we are significantly working on effect of tyre inflation pressure on rolling resistance and taking all other factors constraint.
Technical Paper

Machine Learning considerations in the context of Automotive Functional Safety Requirements for Autonomous Vehicles

2019-11-21
2019-28-2519
We are currently in the age of developing Autonomous Vehicles (AV). Never before in history, the environment has been as conducive as today for these developments to come together to deliver a mass produced autonomous car for use by general public on the roads. Several enhancements in hardware, software, standards and even business models are paving the way for rapid development of AVs, bringing them closer to production reality. Safety is an indispensable consideration when it comes to transportation products, and ground vehicle development is no different. We have several established standards. When it comes to Autonomous Vehicle development, an important consideration is ISO 26262 for, Automotive Functional Safety. Going from generic frameworks such as Failure Mode and Effects Analyses (FMEA) and Hazard and operability study (HAZOP) to Functional Safety, Safety of Intended Functionality, and Automotive Safety Integrity Levels specific is a natural progression.
Technical Paper

Self-Sensing, Lightweight and High Modulus Carbon Nanotube Composites for Improved Efficiency and Safety of Electric Vehicles

2019-11-21
2019-28-2532
Carbon Composites (CFRP) have been touted to be an essential component of future automobiles due to their mechanical properties and lightweight. CFRP has been adopted successfully for secondary and primary structures in Aerospace industry. In Automobiles, they are incorporated in models like the BMW i-series. CFRP suffers from 2 major problems. Delamination of Composites leads to catastrophic and rapid failure which could be dangerous in passenger vehicles. Delamination occurs whenever there is a shock on the composite. Secondly, Composites need regular expensive maintenance to ensure that the material is intact and will not compromise passenger safety. Carbon Nanotubes in composites have shown a substantial increase in delamination resistance. A 0.1wt% addition of HiPCO® Single-walled Carbon Nanotube provides both self-sensing and improved fracture resistance.
Technical Paper

High Durable PU Metallic Monocoat system for tractor sheet metal application.

2019-11-21
2019-28-2541
In sheet metal painting for various applications like Tractor, Automobile, most attractive coating is metallic paints and it is widely applied using 3 coats 2 bake or 3 coat 1 bake technology. Both options, results in high energy consumption, higher production throughput time & lower productivity in manufacturing process. During various brainstorming & sustainable initiatives, paint application process was identified for alternative thinking to reduce burden on environment & save energy. Various other industry benchmarking & field performance requirement studies helped us identify the critical to quality parameters. We worked jointly with supplier to develop mono-coat system without compromising the performance & aesthetical properties. This results in achieving better productivity, elimination of two paint layers, substantial reduction in volatile organic content, elimination of one baking cycle and energy saving.
Technical Paper

LIGHT WEIGHTING OF ADDITIVE MANUFACTURED PARTS FOR AUTOMOTIVE PRODUCTION APPLICATIONS THROUGH TOPOLOGY OPTIMIZATION TECHNIQUES

2019-11-21
2019-28-2544
Rapidly enhancing engineering techniques to manufacture components in quick turnaround time have gained importance in recent time. Manufacturing strategies like Additive Manufacturing (AM) are a key enabler for achieving them. Unlike traditional manufacturing techniques such as injection molding, casting etc., AM unites advanced materials, machines, and software which will be critical for Industry 4.0. Successful application of AM involves a specific combination and understanding of these three key elements. In this paper the AM approach used is Fused Deposition Modelling (FDM). Since material costs contribute to 60% of the overall FDM costs, it becomes a necessity to optimize the material consumption of the produced parts. This paper reports case studies of 3D printed parts used in an Automobile plant’s production aids, which utilize computational methods(CAE), topology optimization and FDM constrains (build directions) to manufacture the part in the most optimal way.
Technical Paper

Photo oxidation analysis method for automotive coating weathering performance evaluation

2019-11-21
2019-28-2555
RESEARCH OBJECTIVE Accelerated artificial weathering performance has been always observed as critical and most important factor for durability prediction of colour and resin for a coating system. Photo oxidation of resin is the phenomenon behind coating’s ageing. Though accelerated weathering tests protocols are widely used in industry, they are very costly and still very time consuming. One automotive grade accelerated testing can go as long as 8 months duration. METHODOLOGY (maximum 150 words) Photo oxidation value (POV) is proportionate to the degradation of the resin material used in coating. During the accelerated weathering POV is measured for the coating at stipulated interval during initial phase and trend is plotted for deterioration verses weathering test duration. POV can be analysed with the help of FTIR analysis to observe bond absorption energy and bond separation energy in the resin system. This trend can be extrapolated to predict the weathering performance of coating.
Technical Paper

Enhancement of safety features of steering wheel using experimentally validated finite element model

2019-11-21
2019-28-2556
Automotive safety is the primary concern in the current world. In order to develop safe and crashworthy vehicles, phenomena behind the energy absorption characteristics of every automotive component must be known. Steering wheel is one of the key players which could cause severe injuries to the driver if sufficient safety measures are not considered. This research focuses on the crash performance of commercial vehicle steering as per head form and body block test prescribed in ECE R12. Detailed FE (Finite Element) model of the steering wheel including armature, horn pad was developed using nonlinear material properties. The model was first validated using the test results. Comparisons between experimental results and finite element analysis results were conducted and correlated using load versus displacement profiles over the duration of impact. A good relationship between test and FE results was found which allows for investigation into the energy analysis of the steering components.
Technical Paper

MOLD IN COLOR DIAMOND WHITE ASA MATERIAL FOR AUTOMOTIVE EXTERIOR APPLICATION

2019-11-21
2019-28-2562
In this paper, mold in color diamond white ASA material has been explored for front bumper grill, fender arch extension and hinge cover applications. Other than aesthetic requirements, these parts have precise fitment requirement under sun load condition in real world usage profile. Structural durability of the design was validated by virtual engineering. Part design and material combinations with better tooling design iterations were analysed by using mold flow analysis. Complete product performances were validated for predefined key test metrics such as structural durability, thermal aging, cold impact, scratch resistance, and weathering criteria. This part met required specification. This mold in color ASA material-based parts has various benefits such as environmentally friendly manufacturing by eliminating environmental issues of coating, easily recycled, and faster part production because intended color achieved in one step during molding.
Technical Paper

STATISTICAL ANALYSIS OF LOW CYCLE FATIGUE PROPERTIES IN METALS FOR ROBUST DESIGN

2019-11-21
2019-28-2576
Objective: In ground vehicle industry, strain life approach is commonly used for predicting fatigue life. This approach requires use of fatigue material properties such as fatigue strength coefficient (σf'), fatigue strength exponent (b), fatigue ductility coefficient (εf'), fatigue ductility exponent (c), cyclic strength coefficient (K′) and cyclic strain hardening exponent (n′). These properties are obtained from stable hysteresis loop of constant amplitude strain-controlled uniaxial fatigue tests. Usually fatigue material properties represent 50th percentile experimental data and doesn't account possible material variation in the fatigue life calculation. However, for robust design of vehicle components, variation in material properties need to be taken into account. In this paper, methodology to develop 5th percentile (B5), 10th percentile (B10) and 20th percentile (B20) fatigue material properties are discussed.
Technical Paper

Accelerated structural durability testing of backhoe loader by creation of duty cycle from field data to predict failure modes.

2019-11-21
2019-28-2583
These days backhoe loader have become main part of construction equipment vehicles. The main function of backhoe is to dig ditches to lay pipes and underground cable, set up foundations for buildings and create drainage systems. During these operations, many failures are observed in backhoe loader structure/parts. With the help of Accelerated structural durability testing, life of backhoe loader & its part can be estimated; through which we can understand different failure modes. The real time data was collected during various operations which includes pit digging, duck walk, ditch climbing, levelling, dozing, piling, truck loading etc. We have used software based approach to process the strain, displacement and other data collected during real time operation to create the duty cycle. The same duty cycle was simulated in the lab condition using servo hydraulic actuators.
Technical Paper

Aerodynamic analysis of commercial vehicle using active vortex generators concept

2019-11-21
2019-28-2409
Any physical body being propelled through the air has drag associated with it. Drag will be created on the surface of the vehicle due to the flow separation at the rear end. In aerodynamics the flow separation can often result in increased drag particularly pressure drag, to delay the flow separation, the vortex generators are used on the roof end of the vehicle just before the point of flow separation. The objective of this project is to perform aerodynamic analysis of commercial vehicle using active vortex generators concept. First, the aerodynamic analysis of a baseline commercial vehicle model is performed and same is validated with the scaled model by using a wind tunnel test. Further analysis has been done by using active vortex generators concept with variation of angle of attacks for vehicle speed of 50, 70, 90 kmph. Also, analysis has been carried out for six different yaw angles. The simulation is carried out with the use of ANSYS Fluent.
Technical Paper

PMSM motor drive for Electric Vehicle applications

2019-11-21
2019-28-2475
To control air pollution in urban areas and to reduce carbon print in the cities, nowadays EV’s are preferred over IC engine vehicles. Earlier Electric vehicles used DC motor and Induction motors. But Brushless Permanent Magnet motors are preferred over Induction motor for EV’s due to their High Torque density, high-power density and highly efficiency. Prevalent Electric vehicles today have Brushless DC motors. Compared to BLDC, PMSM motor have smoother control and negligible torque ripplesThus, PMSM motor is preferred over BLDC for Electric Vehicle, because of its sinusoidal back emf which results in smoother control, and results into smoother and more comfortable driving experience to users. Methodology Sensor based field-oriented control (FOC) is implemented in 48 V 5kW Interior PMSM motor. . To start the Synchronous motor initial position of the rotor magnetic field should be known.
Technical Paper

Non-linear dynamic Modeling, Simulation and Control of Five-Phase 10/8 Switched Reluctance Motor for Electric Vehicle Application

2019-11-21
2019-28-2473
The SRM is gaining much interest for EVs due to its rare-earth-free characteristic and excellent performance. SRM possess several advantages such as low cost, high efficiency, high power density, fault-tolerant and it can produce extended constant power region, and this makes SRM as viable alternative over conventional PM drives. Objective: The objective of this paper is to establish proof of theoretical concepts related to SRM. The key to achieve an effective SRM modeling is to use a methodology that allow the nonlinearity of its magnetic characteristics to be represented while maximizing the simulation speed. This paper represents how magnetization data obtained from FEA in the form of look up tables is most appropriate way to represent SRM model. In this paper, performance analysis of SRM is done with the help of Open loop and Closed loop MATLAB simulations. These dynamic simulations of SRM will assist in understanding behavior of SRM in various loading and speed conditions.
X