Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Applied Brake Controls ABS, TCS, and ESC

2020-01-27
Experience the vehicle dynamic enhancements afforded by anti-lock brakes (ABS), traction control (TCS), and electronic stability control (ESC) with this highly interactive two-day seminar. Designed to get you out of the classroom and on to the test track, a total of six 60-minute structured learning experiences behind the wheel will vividly illustrate the benefits, limitations, and ultimate compromises that must be made when designing and implementing modern brake control systems.
Training / Education

Fundamentals of Threaded Fasteners

2019-12-18
Fastener experts believe that upwards of 95% of all fastener failures are the result of either the wrong fastener for the job or improper installation. Whether this shocking figure is accurate or not, it is irrefutable that threaded fasteners are poorly misunderstood by many in both the fastener and user communities. In October 1990 the USS Iwo Jima suffered a catastrophic steam valve accident minutes after leaving port following repairs to its steam plant. In one of the single most deadly events of Operation Desert Storm, ten of the eleven crewmen present in the engine compartment would lose their lives.
Training / Education

FEA Beyond Basics Thermal Analysis

2019-12-16
Finite Element Analysis (FEA) is a powerful and well recognized tool used in the analysis of heat transfer problems. However, FEA can only analyze solid bodies and, by necessity thermal analysis with FEA is limited to conductive heat transfer. The other two types of heat transfer: convection and radiation must by approximated by boundary conditions. Modeling all three mechanisms of heat transfer without arbitrary assumption requires a combined use of FEA and Computational Fluid Dynamics (CFD).
Training / Education

Weibull-Log Normal Analysis Workshop

2019-12-09
RMS (Reliability-Maintainability-Safety-Supportability) engineering is emerging as the newest discipline in product development due to new credible, accurate, quantitative methods. Weibull Analysis is foremost among these new tools. New and advanced Weibull techniques are a significant improvement over the original Weibull approach. This workshop, originally developed by Dr. Bob Abernethy, presents special methods developed for these data problems, such as Weibayes, with actual case studies in addition to the latest techniques in SuperSMITH® Weibull for risk forecasts with renewal and optimal component replacement.
Training / Education

Fundamentals of Vehicle Suspension Design

2019-12-05
The design and development of vehicle suspensions significantly influences vehicle handling and ride comfort. Suspension system design excellence follows the basic laws of physics using design synthesis techniques, a methodical process for suspension geometry development. Suspension geometry is the foundation of vehicle performance from which high-confidence suspension components and tunings can be developed. Suspension component design continues to move toward mass and cost efficient designs with high levels of stiffness being essential to achieving design requirements.
Training / Education

Vibration Analysis Using Finite Element Analysis (FEA)

2019-12-02
Finite Element Analysis (FEA) has been used by engineers as a design tool in new product development since the early 1990's. Until recently, most FEA applications have been limited to static analysis due to the cost and complexity of advanced types of analyses. Progress in the commercial FEA software and in computing hardware has now made it practical to use advanced types as an everyday design tool of design engineers. In addition, competitive pressures and quality requirements demand a more in-depth understanding of product behavior under real life loading conditions.
Technical Paper

REDUCTION OF STEERING VIBRATION WITH THE APPLICATION OF DYNAMIC TESTING AND ANALYSIS

2019-11-21
2019-28-2421
KEYWORDS: Steering System, Engine Vibrations, Dynamics, Modal Testing, Modal Analysis, ABSTRACT - In modern agriculture, the tractor’s use is indispensable and essential for various operations like cultivation, soil preparation, pulverization and many more. However, despite being efficient machines, tractors may be subjected to different level of vibrations in various parts of their structure. The vibration often plays the key cause of invalidation and component failures and also, affecting the ride and comfort. Since it is known that such vibration factors can affect the behavior in many ways, an understanding of their dynamic response is warranted. In this paper, case study related to reduction of steering system vibration is presented. Objective and Background: Vibration reduction is linked with the reduction either at source or on path. For such, it is necessary to know the reality of machines, component and mechanisms to mitigate the vibration levels on the tractor.
Technical Paper

A new appraisal of the thermomechanical behaviour of a hybrid composite brake disc in a formula vehicle

2019-11-21
2019-28-2572
A new appraisal of the thermomechanical behaviour of a hybrid composite brake disc in a formula vehicle Research Objective This paper presents a hybrid composite brake disc with reduced Un Sprung Weight clearing thermal and structural analysis in a formula vehicle.Main purpose of this study is to analyse thermomechanical behaviour of composite brake disc for a formula vehicle under severe braking conditions. Methodology In the disk brake system, the disc is a major part of a device used for slowing or stopping the rotation of a wheel. Repetitive braking of the vehicle leads to heat generation during each braking condition. Based on the practical understanding the brake disc was remodelled with unique slotting patterns and grooves, using the selected aluminium alloy of (AA8081) with reinforcement particle of Silicon carbide (SiC) and Graphite (Gr) as a hybrid composite material for this proposed work.
Technical Paper

Machine Learning considerations in the context of Automotive Functional Safety Requirements for Autonomous Vehicles

2019-11-21
2019-28-2519
We are currently in the age of developing Autonomous Vehicles (AV). Never before in history, the environment has been as conducive as today for these developments to come together to deliver a mass produced autonomous car for use by general public on the roads. Several enhancements in hardware, software, standards and even business models are paving the way for rapid development of AVs, bringing them closer to production reality. Safety is an indispensable consideration when it comes to transportation products, and ground vehicle development is no different. We have several established standards. When it comes to Autonomous Vehicle development, an important consideration is ISO 26262 for, Automotive Functional Safety. Going from generic frameworks such as Failure Mode and Effects Analyses (FMEA) and Hazard and operability study (HAZOP) to Functional Safety, Safety of Intended Functionality, and Automotive Safety Integrity Levels specific is a natural progression.
Technical Paper

Semi-autonomous parking assist system (SA-PAS)

2019-11-21
2019-28-2529
This paper describes the Semi-autonomous parking assist system (SA-PAS) developed using combination of high accuracy position sensing and electronic power steering. A real-time system that helps driver to identify the parking space and assist to perform maneuvers. Parking is often a difficult task, especially for inexperienced drivers. Starting with the problem of having to find a suitable parking spot, to then maneuvering in to it without colliding with anything or anyone, while trying avoiding disturbing the surrounding traffic. The numbers of vehicles are rapidly increasing as compared to the expansions of roads and parking spaces. Therefore, effective use of the existing spaces is needed (by making them narrower), which can cause inconvenience to many drivers. Semi-autonomous parking assist system searches for suitable space and steers the vehicle into it, while driver has to control the gear shifter, accelerator and brakes.
Technical Paper

LIGHT WEIGHTING OF ADDITIVE MANUFACTURED PARTS FOR AUTOMOTIVE PRODUCTION APPLICATIONS THROUGH TOPOLOGY OPTIMIZATION TECHNIQUES

2019-11-21
2019-28-2544
Rapidly enhancing engineering techniques to manufacture components in quick turnaround time have gained importance in recent time. Manufacturing strategies like Additive Manufacturing (AM) are a key enabler for achieving them. Unlike traditional manufacturing techniques such as injection molding, casting etc., AM unites advanced materials, machines, and software which will be critical for Industry 4.0. Successful application of AM involves a specific combination and understanding of these three key elements. In this paper the AM approach used is Fused Deposition Modelling (FDM). Since material costs contribute to 60% of the overall FDM costs, it becomes a necessity to optimize the material consumption of the produced parts. This paper reports case studies of 3D printed parts used in an Automobile plant’s production aids, which utilize computational methods(CAE), topology optimization and FDM constrains (build directions) to manufacture the part in the most optimal way.
Technical Paper

Photo oxidation analysis method for automotive coating weathering performance evaluation

2019-11-21
2019-28-2555
RESEARCH OBJECTIVE Accelerated artificial weathering performance has been always observed as critical and most important factor for durability prediction of colour and resin for a coating system. Photo oxidation of resin is the phenomenon behind coating’s ageing. Though accelerated weathering tests protocols are widely used in industry, they are very costly and still very time consuming. One automotive grade accelerated testing can go as long as 8 months duration. METHODOLOGY (maximum 150 words) Photo oxidation value (POV) is proportionate to the degradation of the resin material used in coating. During the accelerated weathering POV is measured for the coating at stipulated interval during initial phase and trend is plotted for deterioration verses weathering test duration. POV can be analysed with the help of FTIR analysis to observe bond absorption energy and bond separation energy in the resin system. This trend can be extrapolated to predict the weathering performance of coating.
Technical Paper

Enhancement of safety features of steering wheel using experimentally validated finite element model

2019-11-21
2019-28-2556
Automotive safety is the primary concern in the current world. In order to develop safe and crashworthy vehicles, phenomena behind the energy absorption characteristics of every automotive component must be known. Steering wheel is one of the key players which could cause severe injuries to the driver if sufficient safety measures are not considered. This research focuses on the crash performance of commercial vehicle steering as per head form and body block test prescribed in ECE R12. Detailed FE (Finite Element) model of the steering wheel including armature, horn pad was developed using nonlinear material properties. The model was first validated using the test results. Comparisons between experimental results and finite element analysis results were conducted and correlated using load versus displacement profiles over the duration of impact. A good relationship between test and FE results was found which allows for investigation into the energy analysis of the steering components.
Technical Paper

STATISTICAL ANALYSIS OF LOW CYCLE FATIGUE PROPERTIES IN METALS FOR ROBUST DESIGN

2019-11-21
2019-28-2576
Objective: In ground vehicle industry, strain life approach is commonly used for predicting fatigue life. This approach requires use of fatigue material properties such as fatigue strength coefficient (σf'), fatigue strength exponent (b), fatigue ductility coefficient (εf'), fatigue ductility exponent (c), cyclic strength coefficient (K′) and cyclic strain hardening exponent (n′). These properties are obtained from stable hysteresis loop of constant amplitude strain-controlled uniaxial fatigue tests. Usually fatigue material properties represent 50th percentile experimental data and doesn't account possible material variation in the fatigue life calculation. However, for robust design of vehicle components, variation in material properties need to be taken into account. In this paper, methodology to develop 5th percentile (B5), 10th percentile (B10) and 20th percentile (B20) fatigue material properties are discussed.
Technical Paper

Accelerated structural durability testing of backhoe loader by creation of duty cycle from field data to predict failure modes.

2019-11-21
2019-28-2583
These days backhoe loader have become main part of construction equipment vehicles. The main function of backhoe is to dig ditches to lay pipes and underground cable, set up foundations for buildings and create drainage systems. During these operations, many failures are observed in backhoe loader structure/parts. With the help of Accelerated structural durability testing, life of backhoe loader & its part can be estimated; through which we can understand different failure modes. The real time data was collected during various operations which includes pit digging, duck walk, ditch climbing, levelling, dozing, piling, truck loading etc. We have used software based approach to process the strain, displacement and other data collected during real time operation to create the duty cycle. The same duty cycle was simulated in the lab condition using servo hydraulic actuators.
Technical Paper

Realtime Tuning and optimization of EV traction motors with controllers on E-motor testbench

2019-11-21
2019-28-2478
The need for dedicated development of indigenous electric power-train is becoming much essential in the recent times with upcoming trends and policies. Hence, The validation and optimization of the newly developed electric power-train becomes much crucial in order to ensure smooth real world operation. This can be only possible in E-motor test benches with dedicated equipment for thorough evaluation. Also, there are no practical limitations to check the peak characteristics in a controlled laboratory environment. Initially, the motor is setup by mechanically coupling with the dynamo-meter and the controller in the open loop method with constant parameters to check steady state operability without load or external parameters that affect the torque production and speed of the drive. Then progresses to closed loop method incorporating the feedback control and external parameters including torque loading at the shaft from the dynamo-meter.
X