Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Analysis and Aerodynamic Stability on Design of Low cost and Economical Monocopter

2019-11-21
2019-28-2523
Most recent or all developments in the field of small UAV’s seem to use Quadcopters. It’s a valued commenting that a quadcopter is a smaller amount stable than a similar regular chopper and is additionally less economical. A Quadcopter UAV’s with four propellers is always a major concern to the society when brings to its stability as its major factor. To design and analyze the use of one propeller monocopter is the main objective of this paper. Wacky Whirler technology used here to demonstrate the passage of the monocopter. It is a single propeller powered with a coreless motor which is a modern enhancement in the UAV. It is based on the All Rotating monocopter theory. In the proposed system, controller based on IOT can be used which will be helpful in monitoring and processing the microdrone status.
Technical Paper

Self-Sensing, Lightweight and High Modulus Carbon Nanotube Composites for Improved Efficiency and Safety of Electric Vehicles

2019-11-21
2019-28-2532
Carbon Composites (CFRP) have been touted to be an essential component of future automobiles due to their mechanical properties and lightweight. CFRP has been adopted successfully for secondary and primary structures in Aerospace industry. In Automobiles, they are incorporated in models like the BMW i-series. CFRP suffers from 2 major problems. Delamination of Composites leads to catastrophic and rapid failure which could be dangerous in passenger vehicles. Delamination occurs whenever there is a shock on the composite. Secondly, Composites need regular expensive maintenance to ensure that the material is intact and will not compromise passenger safety. Carbon Nanotubes in composites have shown a substantial increase in delamination resistance. A 0.1wt% addition of HiPCO® Single-walled Carbon Nanotube provides both self-sensing and improved fracture resistance.
Technical Paper

High Durable PU Metallic Monocoat system for tractor sheet metal application.

2019-11-21
2019-28-2541
In sheet metal painting for various applications like Tractor, Automobile, most attractive coating is metallic paints and it is widely applied using 3 coats 2 bake or 3 coat 1 bake technology. Both options, results in high energy consumption, higher production throughput time & lower productivity in manufacturing process. During various brainstorming & sustainable initiatives, paint application process was identified for alternative thinking to reduce burden on environment & save energy. Various other industry benchmarking & field performance requirement studies helped us identify the critical to quality parameters. We worked jointly with supplier to develop mono-coat system without compromising the performance & aesthetical properties. This results in achieving better productivity, elimination of two paint layers, substantial reduction in volatile organic content, elimination of one baking cycle and energy saving.
Technical Paper

MOLD IN COLOR DIAMOND WHITE ASA MATERIAL FOR AUTOMOTIVE EXTERIOR APPLICATION

2019-11-21
2019-28-2562
In this paper, mold in color diamond white ASA material has been explored for front bumper grill, fender arch extension and hinge cover applications. Other than aesthetic requirements, these parts have precise fitment requirement under sun load condition in real world usage profile. Structural durability of the design was validated by virtual engineering. Part design and material combinations with better tooling design iterations were analysed by using mold flow analysis. Complete product performances were validated for predefined key test metrics such as structural durability, thermal aging, cold impact, scratch resistance, and weathering criteria. This part met required specification. This mold in color ASA material-based parts has various benefits such as environmentally friendly manufacturing by eliminating environmental issues of coating, easily recycled, and faster part production because intended color achieved in one step during molding.
Technical Paper

Aerodynamic analysis of race car using active wing concept.

2019-11-21
2019-28-2395
In high speed race cars, aerodynamics is an important aspect for determining performance and stability of vehicle. It is mainly influenced by front and rear wings. Active aerodynamics consist of any type of movable wing element that change their position based on operating conditions of the vehicle to have better performance and handling. In this work, front and rear wings are designed for race car prototype of race car. The high down force aerofoil profiles have been used for design of front and rear wing. The first aerodynamic analysis has been performed on baseline model without wings using CFD tool. For investigation, parameters considered are angle of attack in the range of 0-18˚ for front as well as rear wing at different test speeds of 60, 80, 100 and 120 kmph. The simulation is carried out by using ANSYS Fluent. The simulation results show significant improvement in vehicle performance and handling parameters.
Technical Paper

Aerodynamic analysis of electric passenger car using wind turbine concept at front end

2019-11-21
2019-28-2396
Electric passenger car with floor battery usually have its front boot space empty and the space is used as additional luggage storage. Since it is completely closed, it is an adding factor to the drag coefficient of the vehicle. This space can be utilized to capture the wind energy to reduce the drag coefficient and generate electricity. Based on this, the objective of the work is to perform an aerodynamic analysis of an electric passenger car using wind turbine placed at the front. An active front grill shutters will be used to optimize the aerodynamic drag at different vehicle speeds. Initially the aerodynamic analysis of a basic electric car model is performed and then it is validated with the scaled model by using wind tunnel testing. The modified model with a wind turbine and an active grill shutters is analyzed, considering different parameters such as number of turbine blades, height of wind turbine, angle of attack, vehicle speed (60-120 kmph).
Technical Paper

Aerodynamic analysis of commercial vehicle using active vortex generators concept

2019-11-21
2019-28-2409
Any physical body being propelled through the air has drag associated with it. Drag will be created on the surface of the vehicle due to the flow separation at the rear end. In aerodynamics the flow separation can often result in increased drag particularly pressure drag, to delay the flow separation, the vortex generators are used on the roof end of the vehicle just before the point of flow separation. The objective of this project is to perform aerodynamic analysis of commercial vehicle using active vortex generators concept. First, the aerodynamic analysis of a baseline commercial vehicle model is performed and same is validated with the scaled model by using a wind tunnel test. Further analysis has been done by using active vortex generators concept with variation of angle of attacks for vehicle speed of 50, 70, 90 kmph. Also, analysis has been carried out for six different yaw angles. The simulation is carried out with the use of ANSYS Fluent.
Technical Paper

Aerodynamic Analysis of a Passenger Car to Reduce Drag using Active Grill Shutters and Active Air Dams

2019-11-21
2019-28-2408
Active aerodynamics can be defined as the concept of reducing drag by making real-time changes to certain devices such that it modifies the airflow around a vehicle. Using such devices also have the added advantages of improving ergonomics and performance along with aesthetics. A significant reduction in fuel consumption can also be seen when using such devices. The objective of this work is to reduce drag acting on a passenger car using the concept of active aerodynamics with grill shutters and air dams. First, analysis has been carried out on a baseline passenger car and further simulated using active grill shutters and air dams for vehicle speed ranging from 60 kmph to 120 kmph, with each active device open from 0° to 90°. The improved model obtained is then subjected to variations in yaw angle ranging from -18° to +18°. The optimized model is then validated for a scaled down prototype in a wind tunnel.
Technical Paper

Analysis Of GaN Based BLDC Motor Drive For Automotive Application

2019-11-21
2019-28-2471
Objective Automotive sector is rapidly moving towards electric vehicle. BLDC motor is gaining popularity in the field of electric vehicle due to its high torque to weight ratio and simple control. In this paper we will focus on Switching loss characterization of 3 kW GaN based BLDC drive for electric vehicle. To improve efficiency of drive gallium-nitride based power transistor is used instead of Si MOSFET. GaN devices enable the design of inverter at higher frequencies with improved power density and efficiency as compared to traditional Si MOSFETs. Methodology In this paper commercially available GaN devices compared with Si MOSFETs. The power devices, which are selected for the performance comparison, are EPC2022 GaN by EPC, GS61008P GaN by Gan System and SiDR668DP Si MOSFET by Vishay. The Switching losses analytically predicted in MATHCAD tool and then compared with SPICE simulation losses. Double pulse test circuit is used to find out power losses of power transistors.
Technical Paper

Design analysis of a retrofit system for an electric two wheeler

2019-11-21
2019-28-2482
Two wheelers are the major mode of single transport in the metros of India. They contribute about 70 % of the auto market unit wise. Also it is proved from the research that for per unit energy consumption they contribute more to the environment emission. Conventional IC engine based energy supply unit can be replaced with an electric DC motor with chargeable battery as the energy source for the two wheelers present in the market. In the current research, engine is replaced with the motor, batteries and controller. The above system is placed on the space emptied by the conventional engine, The design developed is tested on different gradients for identifying the motor torque for minimum and maximum resistances available on the road. The paper provides an insight on the of the torque requirements based on variable resistances required for two wheelers. Also the system will be used as a retrofit for the existing IC engine bikes to be converted in electric bikes.
Technical Paper

Impact of wheel-housing on aerodynamic drag and effect on energy consumption on an electric bus body

2019-11-21
2019-28-2394
Role of Wheel and underbody Aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing geometry and pattern. Based on benchmarking a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing- at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption on an Electric Bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption.
Technical Paper

Affect of Tyre inflation on Rolling Resistance of Tyre

2019-11-21
2019-28-2415
Rolling resistance refers to the various forms of resistance against driving force when the vehicle is in motion. Several factors contribute to rolling resistance, including wind drag on the car, acceleration resistance generated by inertia force when speeding up, and resistance on the tyres. Tyre inflation pressure plays vital role on Coefficient of Rolling Resistance (RRC) of Tyre consequently vehicle mileage. Low or High tyre pressure is not good for driving comfort, safety of vehicle well as for environment. Petroleum Conservation Research Association ( PCRA ) has taken good initiative in direction to Tyre Star marking based on RRC values of Tyre.
Technical Paper

Calculation of Drag Torque Losses by Component of a Transfer Case

2019-10-28
2019-01-2605
In recent decades, fuel economy has become a key indicator of an automaker social responsibility and a market differentiation factor, and ultimately it is regulated by government agencies such as EPA through CO2 emissions compliance tests. The light pick-up truck and SUV production share has been increasing in the last few years, being the 4-wheel drive capability one of the main features that the customers look for. Within the 4-wheel drive system, the transfer case has a significant impact to both torque transfer efficiency and parasitic losses. The scope of this paper is to better understand the parasitic losses of a transfer case by the quantification of its individual drag losses by component. At product development phase, one measurement of interest is the system level spin loss which has a target value defined by the automakers, and contribution by component is often neglected if the system has the expected performance.
Technical Paper

Design and Experimental Verification of a High Force Density Tubular Permanent Magnet Linear Motor for Aerospace Application

2019-09-16
2019-01-1911
This paper presents the design and construction of a high force density tubular permanent-magnet (PM) linear motor. A strut structure of a tubular PM linear motor developed to improve resistance to impurities and structural rigidity is described. In the design, computationally efficient two-dimensional finite-element analysis is used to estimate the motor force density. The motor’s design is optimized for the major pole number/slot number combinations of 8/24, 16/24, 20/24, 28/24, 32/24, and 40/24. The optimized motor design of a three-phase 16/24 combination with one-layer winding achieved the highest force-to-mass density. The force-to-mass density of the designed motor is higher than that of the first prototype motor by a factor of 5. The validity of the proposed design method and the expected drive characteristics are experimentally verified using the prototype.
Technical Paper

Hypersonic Flow Simulation Towards Space Propulsion Geometries

2019-09-16
2019-01-1873
This work aims to expand the applicability of an open-source numerical tool to solve hypersonic gas dynamic flows for space propulsion geometries. This is done by validating the code using two well-known hypersonic test cases, the double cone and the hollow cylinder flare, used by the NATO Research and Technology Organization for the validation of hypersonic flight for laminar viscous-inviscid interactions (D. Knight, "RTO WG 10 - Test cases for CFD validation of hypersonic flight," in 40th AIAA Aerospace Sciences Meeting & Exhibit, 2002). The Computational Fluid Dynamic (CFD) simulation is conducted using the two-temperature solver hy2Foam that is capable to study external aerodynamics in re-entry flows. In the present work the assessment of hy2Foam to solve hypersonic complex flow features with strong interactions including non-equilibrium effects was demonstrated.
Technical Paper

Flight Optimization Model on Global and Interval Ranges for Conceptual Studies of MEA Systems

2019-09-16
2019-01-1906
In development of more electric aircraft applications, it is important to discuss aircraft energy management on various level of aircraft operation. This paper presents a computationally efficient optimization model for evaluating flight efficiency on global and interval flight ranges. The model is described as an optimal control problem with an objective functional subjected to state condition and control input constraints along a flight path range. A flight model consists of aircraft point-mass equations of motion including engine and aerodynamic models. The engine model generates the engine thrust and fuel consumption rate for operation condition and the aerodynamic model generates the drag force and lift force of an aircraft for flight conditions. These models is identified by data taken from a published literature as an example. First, approximate optimization process is performed for climb, cruise, decent and approach as each interval range path.
Technical Paper

Influence of Amount of Phenolic Resin on the Tribological Performance of Environment-Friendly Friction Materials

2019-09-15
2019-01-2105
The binder in friction materials (FMs) plays a very crucial role of binding all the ingredients firmly so that they can function efficiently and reliably. The type and amount of binder, both are very critical for manipulating the desired performance properties, which mainly include friction and its sensitivity towards operating parameters, wear resistance, counter-face friendliness, noise, vibration etc. Although a lot is reported on the influence of types of resins on the tribo-performance of FMs, hardly any paper pertains to paint this on a bigger canvas with a more detailed understanding of the amount of resin in FMs on the performance properties including noise. The present study addresses these aspects by developing brake-pads with identical composition, but varying in amount (wt.%) of straight phenolic resins (6, 8, 10 and 12) by compensating the difference by barite, a space filler.
X