Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Hybrid and Electric Vehicle Engineering Academy

2019-12-02
SAE Engineering Academies provide comprehensive and immersive training experiences, helping new and re-assigned engineers become proficient and productive in a short period of time. The Hybrid and Electric Vehicle Engineering Academy covers hybrid and electric vehicle engineering concepts, theory, and applications relevant to HEV, PHEV, EREV, and BEV for the passenger car industry. While the theory and concepts readily apply to the commercial vehicle industry as well, the examples and applications used will apply primarily to the passenger car industry.
Technical Paper

A novel approach on range prediction of a hydrogen fuel cell electric truck

2019-11-21
2019-28-2514
A novel approach on range prediction of a hydrogen fuel cell electric truck C.Venkatesh - Manager - Product Development, Sustainable Mobility & Advanced Technologies Abstract: A novel approach on range prediction of a hydrogen fuel cell electric vehicle Abstract: Today's growing commercial vehicle population creates a demand for fossil fuel surplus requirement and develops highly polluted urban cities in the world. Hence addressing both factors are very much essential. Battery electric vehicles are with limited vehicle range and higher charging time. So it is not suitable for the long-haul application. Hence the hydrogen fuel cell based electric vehicles are the future of the commercial electric vehicle to achieve long range, zero emission and alternate for reducing fossil fuels requirement. The hydrogen fuel-cell electric vehicle range, it means the total distance covered by the vehicle in a single filling of hydrogen into the onboard cylinders.
Technical Paper

Determining the State Of Health [SOH] of Li Ion cell

2019-11-21
2019-28-2579
“NuGen Mobility Summit-2019” Paper Title : Determining the State Of Health [SOH] of Li Ion cell Authors: Sushant Mutagekar, Ashok Jhunjhunwala, Prabhjot Kaur Objective Cells age with life. This aging is dependant on various factors like charging/discharging rates, DOD of operation and operating temperature. As the cell ages it undergoes power fade (ability to deliver required power at particular State of Charge [SOC]) and capacity fade (the charge storage capacity of cell). In an Electric Vehicle it is important to know what power shall be demanded from a battery irrespective of what its current SOC is and number of cycles it has undergone. With minimal accuracy and less computational power, it is difficult for a Battery Management System [BMS] to accurately determine SOH; the paper proposes a a precise model that may help.
Technical Paper

Aerodynamic analysis of electric passenger car using wind turbine concept at front end

2019-11-21
2019-28-2396
Electric passenger car with floor battery usually have its front boot space empty and the space is used as additional luggage storage. Since it is completely closed, it is an adding factor to the drag coefficient of the vehicle. This space can be utilized to capture the wind energy to reduce the drag coefficient and generate electricity. Based on this, the objective of the work is to perform an aerodynamic analysis of an electric passenger car using wind turbine placed at the front. An active front grill shutters will be used to optimize the aerodynamic drag at different vehicle speeds. Initially the aerodynamic analysis of a basic electric car model is performed and then it is validated with the scaled model by using wind tunnel testing. The modified model with a wind turbine and an active grill shutters is analyzed, considering different parameters such as number of turbine blades, height of wind turbine, angle of attack, vehicle speed (60-120 kmph).
Technical Paper

IOT based Battery Diagnostics for Battery swapping station.

2019-11-21
2019-28-2441
An electric vehicle is significantly promoted by government and industry to reduce carbon footprint and effective energy management. IC engines get replaced by the battery and diagnosis parameters of engine also need to replace with battery parameters. Main objective is to provide analysis of battery to battery swapping stations. State of charge and state of health plays important role in battery management system and vehicle performance. State of health estimation has many techniques, but large equipment needs for it and become costlier and bulkier. Batteries internal resistance increases as it gets degraded, proposed technique based on adaptive method which didn’t need any extra hardware, this technique identifies the health based on degraded capacity. Cloud platform is used to store the data and process it and display to users and swapping station. Status updating unit located on battery is connected to cloud and it gives complete analysis of battery to vehicle users.
Technical Paper

A Self-Intelligent Traffic Light Control System based on Traffic Environment using Machine Learning

2019-11-21
2019-28-2459
In this paper, we will detect and track vehicles on a video stream and count those going through a defined line and to ultimately give an idea of what the real-time on street situation is across the road network. Our major objective is to optimize the delay in transit of vehicles in odd hours of the day. It uses YOLO object detection technique to detect objects on each of the video frames And SORT (Simple Online and Realtime Tracking algorithm) to track those objects over different frames. Once the objects are detected and tracked over different frames a simple mathematical calculation is applied to count the intersections between the vehicles previous and current frame positions with a defined line. At present, the traffic control systems in India, lack intelligence and act as an open-loop control system, with no feedback or sensing network. Present technologies use Inductive loops and sensors to detect the number of vehicles passing by.
Technical Paper

Noise and vibration simulations method for electric hybrid tractor powertrain.

2019-11-21
2019-28-2469
Internal combustion (IC) engines have been serving as prime source of power in tractors, since late 19th Century. Over this period, there have been significant improvements in IC engine technology leading to increased power density, reduction in tailpipe emissions and refinement in powertrain noise of tractors. As the regulations governing tailpipe emissions continue to be more stringent, original equipment manufacturers also have initiated work on innovative approaches such as diesel-electric hybrid powertrains to ensure compliance with new norms. However, introduction of such technologies may impact customer’s auditory, vibratory and drivability perceptions. Absence of conventional IC engine noise, association of electric whistle and whine, torque changes with activation/de-activation of motors and transmission behavior under transient conditions may result in new NVH issues in hybrid electric vehicles.
Technical Paper

Improved Performance of Electric Vehicles with Supercapacitor

2019-11-21
2019-28-2468
Background: Due to Environmental concern worldwide, Mobility is under pressure to shift gear from fossil fuel to Electric. This is Rebirth of Electric Mobility is with state’s initiative, but it is facing bigger challenges than the 1900s era. Fossil fuel vehicles have already carved the benchmark on ease of range per charge, and time of charge (filling of fossil fuel), which needs to be at least matched by Electric Vehicles. The success of electric vehicles will not only be driven by state policy but also by performance and Economic Viability. While at this introduction level state is trying best to offset cost by way of subsidy/tax-sops offering. So, in clear terms “Performance of Electric Vehicles” need to be addressed and enhanced to put them in main stream in place of fossil fuel vehicles. In last 100 years there has been significant technological development in Motors, and Energy Storage, which is base of Electric mobility.
Technical Paper

Low Voltage Powertrain in Light Electric Vehicles

2019-11-21
2019-28-2467
Engineering objective Light Electric Vehicles (LEV) with Li-ion batteries suffer from short battery life and poor efficiency, due to low grade electronics. Battery management systems (BMS) cannot always keep the pack in balance, and after cell voltages drift, capacity of the pack diminishes and some cells may destruct, causing a fire. The paper describes a novel approach to LEV powertrains using parallel connected battery cells & control methodology that keep cells in balance naturally, thereby eliminating BMS and hence safer to use. Li-Ion cells with different chemistries can be used and superior thermal management reduces temperature rise, resulting in longer battery life. Methodology Based on the original invention by the author, the system circuit schematics was designed and simulated using OrCAD PSpice. After obtaining results from the simulation, the first prototype device was constructed and tested in laboratory.
Technical Paper

ELECTRIC VEHICLE CHARGING STRATEGIES WITH REDUCED GOVERNMENT SPENDING AND ON-DEMAND CHARGE AVAILABILITY

2019-11-21
2019-28-2477
– Objective: Objective of the paper is to study and explore the electric vehicle (EV) charging infrastructure enhancing options. The automotive industry today is at the junction of many disruptive technologies. Electric vehicle technology is one of the leading disruptive technologies. While automotive companies are embracing the electric vehicle technology by investing significantly in the field of research, technology and training, the question that is still largely un-answered is what will be the structure of the charging infrastructure. One reason for this ambiguity is that majority of investors believe that the responsibility for development of charging infrastructure is owned by government or government bodies. Methodology: In this paper we will discuss about other alternates to charging infrastructure developed by government or government bodies.
Technical Paper

Electric Commercial Vehicles And Charging Solutions

2019-11-21
2019-28-2476
Objective : Objective of the paper is to acquaint the audience with the concept of electric vehicles, Powertrain components used in an electric bus, Siemens contribution to the field of Electromobility, Typical configurations used in an electric bus, challenges and current limitations, emerging Technologies, future, how to address the future charging infra requirement. Methodology : The subject shall be discussed with the audience through a presentation coupled with Explanation by the presenter. The topic shall be opened with the concept of electromobility followed By history of electromobility at Siemens, contribution to the field of electro mobility, typical configurations of electric vehicles, Advantages of electric vehicles vis a vis conventional diesel buses, typical configurations of an electric bus, feasibility of electric buses for various transport services. Comparison of induction motor Vs.
Technical Paper

PMSM motor drive for Electric Vehicle applications

2019-11-21
2019-28-2475
To control air pollution in urban areas and to reduce carbon print in the cities, nowadays EV’s are preferred over IC engine vehicles. Earlier Electric vehicles used DC motor and Induction motors. But Brushless Permanent Magnet motors are preferred over Induction motor for EV’s due to their High Torque density, high-power density and highly efficiency. Prevalent Electric vehicles today have Brushless DC motors. Compared to BLDC, PMSM motor have smoother control and negligible torque ripplesThus, PMSM motor is preferred over BLDC for Electric Vehicle, because of its sinusoidal back emf which results in smoother control, and results into smoother and more comfortable driving experience to users. Methodology Sensor based field-oriented control (FOC) is implemented in 48 V 5kW Interior PMSM motor. . To start the Synchronous motor initial position of the rotor magnetic field should be known.
Technical Paper

Optimization of An EV Controller Design For A Three Wheeler BOVs - EMC Approach

2019-11-21
2019-28-2474
Introduction: The advent of electric mobility is changing the conventional mobility techniques and their application in automobiles across all segments. Three wheeler Battery Operated Vehicles (BoVs) are a special category of electric vehicles (EVs) as far as EMC compliance is concerned. The problem mainly lies with the open body design and cost cutting measures being exercised by the manufactures which makes Electromagnetic compatibility (EMC) compliance challenging. Objective: Though it is sometimes possible to resolve EMC malfunctions related to motor power cable, cables & wiring harness etc. using external techniques post design stage, but controller being a closed and typical element makes it difficult to improve against EMC malfunctions using external techniques. This paper would concentrate on the controller design parameters and improvement of the same in terms of Electromagnetic compatibility (EMC) and performance efficiency at the design stage itself.
Technical Paper

Non-linear dynamic Modeling, Simulation and Control of Five-Phase 10/8 Switched Reluctance Motor for Electric Vehicle Application

2019-11-21
2019-28-2473
The SRM is gaining much interest for EVs due to its rare-earth-free characteristic and excellent performance. SRM possess several advantages such as low cost, high efficiency, high power density, fault-tolerant and it can produce extended constant power region, and this makes SRM as viable alternative over conventional PM drives. Objective: The objective of this paper is to establish proof of theoretical concepts related to SRM. The key to achieve an effective SRM modeling is to use a methodology that allow the nonlinearity of its magnetic characteristics to be represented while maximizing the simulation speed. This paper represents how magnetization data obtained from FEA in the form of look up tables is most appropriate way to represent SRM model. In this paper, performance analysis of SRM is done with the help of Open loop and Closed loop MATLAB simulations. These dynamic simulations of SRM will assist in understanding behavior of SRM in various loading and speed conditions.
Technical Paper

Analysis Of GaN Based BLDC Motor Drive For Automotive Application

2019-11-21
2019-28-2471
Objective Automotive sector is rapidly moving towards electric vehicle. BLDC motor is gaining popularity in the field of electric vehicle due to its high torque to weight ratio and simple control. In this paper we will focus on Switching loss characterization of 3 kW GaN based BLDC drive for electric vehicle. To improve efficiency of drive gallium-nitride based power transistor is used instead of Si MOSFET. GaN devices enable the design of inverter at higher frequencies with improved power density and efficiency as compared to traditional Si MOSFETs. Methodology In this paper commercially available GaN devices compared with Si MOSFETs. The power devices, which are selected for the performance comparison, are EPC2022 GaN by EPC, GS61008P GaN by Gan System and SiDR668DP Si MOSFET by Vishay. The Switching losses analytically predicted in MATHCAD tool and then compared with SPICE simulation losses. Double pulse test circuit is used to find out power losses of power transistors.
Technical Paper

Performance & efficiency Improvement of Electric Vehicle Power train

2019-11-21
2019-28-2483
Introduction: The advent of electric mobility is changing the conventional mobility techniques and their application in automobiles across all segments. This development comes with challenges ranging across varied sub -systems in a vehicle including Power Train, HVAC, Accessories, etc. Objective: This paper would concentrate on the Power train related sub systems & improvement of the same both in terms of Efficiency & Performance. Methodology: The electric power train consists of three major sub parts: 1. Motor Unit 2. Controller with Power electronics 3. Battery Pack with BMS We would concentrate on improving the overall efficiency and performance of all these subsystems while they perform in vehicle environment and work in tandem by deploying following techniques: a. Improved Regenerative Braking for converting vehicles Kinetic energy into electrical energy using specific algorithms and control techniques b.
Technical Paper

Numerical Simulation of Battery Cooling Systems in Electric Vehicles

2019-11-21
2019-28-2481
As electric vehicles are working on stored energy in batteries or cells. These units needs to be regulated by cool down or heat up to perform utmost and to ensure individual cell life. Battery cooling systems are installed on vehicles to regulate the temperature around these packs. To ensure maximum performance of these units, numerical simulation is performed. Optimization (includes study of cover design, number of openings, area & position of openings around the cover in which unit is mounted) of flow rate as well as flow path into battery cooling systems is carried out. This study is carried to design a stable unit.
Technical Paper

Thermal Management of Li-Ion Battery Pack using GT-SUITE

2019-11-21
2019-28-2500
Objective It is very important to simulate the battery pack being built to understand its behavior when used in applications especially Electric vehicles (EV). All Li-Ion cells are not the same. They need to be characterized before building any battery pack. Hence modeling the battery pack to simulated its performance in the actual conditions becomes important. Methodology To understand the behavior of cells in the on-field environment, they are tested at various conditions like different rates of charging/discharging, various depth of discharge (DOD), ambient temperature, etc. HPPC test is also performed on cells to derive its RC model equivalent model. GT Suite simulation software is used to model the Li-Ion cell using the testing data. Depending on the pack configuration, the modeled cell is connected in the required series and parallel configuration, to study the battery pack with respect to aging, performance and cooling requirements.
Technical Paper

Performance of Switched Reluctance Motor for Small Electric Vehicle in Urban Mobility

2019-11-21
2019-28-2501
Small electric vehicles are challenging in nature while designing the power train and especially the mounting of batteries within the volume available. In this research, power train of small electric vehicle is designed and it is compared with the electric vehicles. The designed vehicle should meet the requirements of urban car so that it can be preferred in urban mobility. Emphasis is given on studying performance parameters such as motor speed, torque for different urban driving cycles by altering the motor and its no. of poles. Battery pack is designed to fit under the front hood of the vehicle whereas motor is fitted at the rear. Range is estimated using Simulink and it is validated with mathematical calculation using Peukert method performed in MATLAB. It is concluded that the designed vehicle with Switched Reluctance Motor 6/4 configuration of 15 kW, 110 Nm is sufficient to meet the urban car in 2020 targets. NCA battery is preferred for range improvement.
Technical Paper

ELECTRIC BICYCLE WITH REGENERATIVE BRAKING SYSTEM

2019-11-21
2019-28-2490
One of the significant challenges in the present scenario is the depletion of fossil fuels. As the use of conventional fuel is increasing day by day, it will lead to the complete depletion of fossil fuel in the future. So, an alternate solution to this problem is the use of electric vehicles which is independent of the dependence on fossil fuels. Electric vehicles (EVs) use batteries to power them and are electric motor driven. One advantage of using these electric vehicles is that they are pollution free and smokeless. One of the critical limitations of these electric vehicles is the low driving range per charge. The main proposal of this paper is the implementation of a regenerative braking system (RBS) which helps in recovering the kinetic energy that gets wasted during braking. RBS will be very useful in hilly terrain areas where much potential energy can get recovered while moving down the hill.
X